A mission planning framework for fleets of connected drones
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/31385 |
Resumo: | The usage of aerial drones has become more popular as they also become more accessible, both in economic and usability terms. Nowadays, these vehicles can present reduced dimensions and a good cost-benefit ratio, which makes it possible for several services and applications supported by aerial drone networks to emerge. Some scenarios that benefit from the use of aerial drones are the monitoring of emergency situations and natural disasters, the patrolling of urban areas and support to police forces, and tourist applications such as the real-time video transmission of points of interest. It is common for the control of the drone to be dependent on human intervention in these situations, which requires professionals specialized in its control. However, in recent years, several solutions have emerged that enable the autonomous flight of these vehicles, minimizing manual interference. Taking into account the enormous diversity of use cases, many of the existing solutions for autonomous control focus on specific scenarios. Generic mission planning platforms also exist, but most of them only allow missions consisting of linear waypoints to be traversed. These situations translate into a mission support that is not very flexible. In this dissertation, we propose a modular infrastructure that can be used in various scenarios, enabling the autonomous control and monitoring of a fleet of aerial drones in a mission context. This platform has two main components, one integrated into the onboard computer of the vehicle, and the other one in the ground control. The former allows the communication with the flight controller so that it can collect telemetry data and send movement instructions to the drone. The latter allows to monitor this data and send the commands remotely, also enabling robust mission planning with multiple drones. A mission can be described in a script that the ground module interprets, sending the commands to the assigned vehicles. These missions can describe different paths, modifying the behaviour of the drones according to external factors, such as a sensor reading. It is also possible to define plugins to be reused in various missions, for example, by integrating an algorithm that ensures that all drones maintain connectivity. The solution was evaluated in scenarios with a single drone and with the collaboration of multiple drones. The tests were performed in a simulated environment and also in an environment with real drones. The observed behaviour is similar in both scenarios. |
id |
RCAP_1599472dbfde1b9f96213433670536d1 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/31385 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A mission planning framework for fleets of connected dronesAutonomous aerial vehiclesDronesControl platformUser-friendly description languageMissionsThe usage of aerial drones has become more popular as they also become more accessible, both in economic and usability terms. Nowadays, these vehicles can present reduced dimensions and a good cost-benefit ratio, which makes it possible for several services and applications supported by aerial drone networks to emerge. Some scenarios that benefit from the use of aerial drones are the monitoring of emergency situations and natural disasters, the patrolling of urban areas and support to police forces, and tourist applications such as the real-time video transmission of points of interest. It is common for the control of the drone to be dependent on human intervention in these situations, which requires professionals specialized in its control. However, in recent years, several solutions have emerged that enable the autonomous flight of these vehicles, minimizing manual interference. Taking into account the enormous diversity of use cases, many of the existing solutions for autonomous control focus on specific scenarios. Generic mission planning platforms also exist, but most of them only allow missions consisting of linear waypoints to be traversed. These situations translate into a mission support that is not very flexible. In this dissertation, we propose a modular infrastructure that can be used in various scenarios, enabling the autonomous control and monitoring of a fleet of aerial drones in a mission context. This platform has two main components, one integrated into the onboard computer of the vehicle, and the other one in the ground control. The former allows the communication with the flight controller so that it can collect telemetry data and send movement instructions to the drone. The latter allows to monitor this data and send the commands remotely, also enabling robust mission planning with multiple drones. A mission can be described in a script that the ground module interprets, sending the commands to the assigned vehicles. These missions can describe different paths, modifying the behaviour of the drones according to external factors, such as a sensor reading. It is also possible to define plugins to be reused in various missions, for example, by integrating an algorithm that ensures that all drones maintain connectivity. The solution was evaluated in scenarios with a single drone and with the collaboration of multiple drones. The tests were performed in a simulated environment and also in an environment with real drones. The observed behaviour is similar in both scenarios.A utilização de drones aéreos tem-se vindo a popularizar à medida que estes se tornam mais acessíveis, quer em termos económicos quer em usabilidade. Atualmente, estes veículos são capazes de apresentar dimensões reduzidas e uma boa relação de custo-benefício, o que potencia que diversos serviços e aplicações suportados por redes de drones aéreos estejam a emergir. Alguns cenários que beneficiam da utilização de drones aéreos são a monitorização de situações de emergência e catástrofes naturais, a patrulha de áreas urbanas e apoio às forças policiais e aplicações turísticas como a transmissão de vídeo em tempo real de pontos de interesse. É comum que o controlo do drone esteja dependente de intervenção humana nestas situações, o que requer profissionais especializados no seu controlo. No entanto, nos últimos anos têm surgido diversas soluções que possibilitam o vôo autónomo destes veículos, minimizando a interferência manual. Perante a enorme diversidade de casos de aplicação, muitas das soluções existentes para o controlo autónomo focam-se em cenários específicos de intervenção. Existem também plataformas de planeamento genérico de missões, mas que na sua maioria apenas permitem missões constituídas por conjuntos lineares de pontos a ser percorridos. Estas situações traduzem-se num suporte a missões que é pouco flexível. Nesta dissertação propomos uma infraestrutura modular passível de ser utilizada em cenários variados, possibilitando o controlo autónomo de uma frota de drones aéreos num contexto de missão e a sua monitorização. Esta plataforma tem dois componentes principais, um integrado no computador a bordo do veículo e o outro no controlo terrestre. O primeiro permite a comunicação com o controlador de vôo para que se possa recolher diversos dados de telemetria e enviar instruções de movimento para o drone. O segundo permite monitorizar esses dados e enviar os comandos remotamente, possibilitando também um planeamento robusto de missões com múltiplos drones. Uma missão pode ser descrita num script que o módulo terrestre interpreta, enviando os comandos para os veículos atribuídos. Estas missões podem descrever diversos caminhos, modificando o comportamento dos drones de acordo com factores externos, como a leitura de um sensor. Também é possível definir plugins para serem reutilizados em várias missões, como por exemplo, integrando um algoritmo que garante que todos os drones mantêm a conectividade. A solução foi avaliada em cenários com um único drone e com a colaboração de múltiplos drones. Os testes foram executados em ambiente simulado e também num ambiente com drones reais. O comportamento observado nas missões é semelhante em ambos os cenários.2022-03-08T00:00:00Z2021-02-25T00:00:00Z2021-02-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/31385engSilva, Ana Margarida Oliveira da Costa einfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:00:35Zoai:ria.ua.pt:10773/31385Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:03:16.763477Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A mission planning framework for fleets of connected drones |
title |
A mission planning framework for fleets of connected drones |
spellingShingle |
A mission planning framework for fleets of connected drones Silva, Ana Margarida Oliveira da Costa e Autonomous aerial vehicles Drones Control platform User-friendly description language Missions |
title_short |
A mission planning framework for fleets of connected drones |
title_full |
A mission planning framework for fleets of connected drones |
title_fullStr |
A mission planning framework for fleets of connected drones |
title_full_unstemmed |
A mission planning framework for fleets of connected drones |
title_sort |
A mission planning framework for fleets of connected drones |
author |
Silva, Ana Margarida Oliveira da Costa e |
author_facet |
Silva, Ana Margarida Oliveira da Costa e |
author_role |
author |
dc.contributor.author.fl_str_mv |
Silva, Ana Margarida Oliveira da Costa e |
dc.subject.por.fl_str_mv |
Autonomous aerial vehicles Drones Control platform User-friendly description language Missions |
topic |
Autonomous aerial vehicles Drones Control platform User-friendly description language Missions |
description |
The usage of aerial drones has become more popular as they also become more accessible, both in economic and usability terms. Nowadays, these vehicles can present reduced dimensions and a good cost-benefit ratio, which makes it possible for several services and applications supported by aerial drone networks to emerge. Some scenarios that benefit from the use of aerial drones are the monitoring of emergency situations and natural disasters, the patrolling of urban areas and support to police forces, and tourist applications such as the real-time video transmission of points of interest. It is common for the control of the drone to be dependent on human intervention in these situations, which requires professionals specialized in its control. However, in recent years, several solutions have emerged that enable the autonomous flight of these vehicles, minimizing manual interference. Taking into account the enormous diversity of use cases, many of the existing solutions for autonomous control focus on specific scenarios. Generic mission planning platforms also exist, but most of them only allow missions consisting of linear waypoints to be traversed. These situations translate into a mission support that is not very flexible. In this dissertation, we propose a modular infrastructure that can be used in various scenarios, enabling the autonomous control and monitoring of a fleet of aerial drones in a mission context. This platform has two main components, one integrated into the onboard computer of the vehicle, and the other one in the ground control. The former allows the communication with the flight controller so that it can collect telemetry data and send movement instructions to the drone. The latter allows to monitor this data and send the commands remotely, also enabling robust mission planning with multiple drones. A mission can be described in a script that the ground module interprets, sending the commands to the assigned vehicles. These missions can describe different paths, modifying the behaviour of the drones according to external factors, such as a sensor reading. It is also possible to define plugins to be reused in various missions, for example, by integrating an algorithm that ensures that all drones maintain connectivity. The solution was evaluated in scenarios with a single drone and with the collaboration of multiple drones. The tests were performed in a simulated environment and also in an environment with real drones. The observed behaviour is similar in both scenarios. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-02-25T00:00:00Z 2021-02-25 2022-03-08T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/31385 |
url |
http://hdl.handle.net/10773/31385 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137687783866368 |