Pancreas Rejection in the Artificial Intelligence Era

Detalhes bibliográficos
Autor(a) principal: Vigia, Emanuel
Data de Publicação: 2023
Outros Autores: Ramalhete, Luís, Ribeiro, Rita, Barros, Inês, Chumbinho, Beatriz, Filipe, Edite, Pena, Ana, Bicho, Luís, Nobre, Ana, Carrelha, Sofia, Sobral, Mafalda, Lamelas, Jorge, Coelho, João Santos, Ferreira, Aníbal, Marques, Hugo Pinto
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/158425
Resumo: Introduction: Pancreas transplantation is currently the only treatment that can re-establish normal endocrine pancreatic function. Despite all efforts, pancreas allograft survival and rejection remain major clinical problems. The purpose of this study was to identify features that could signal patients at risk of pancreas allograft rejection. Methods: We collected 74 features from 79 patients who underwent simultaneous pancreas–kidney transplantation (SPK) and used two widely-applicable classification methods, the Naive Bayesian Classifier and Support Vector Machine, to build predictive models. We used the area under the receiver operating characteristic curve and classification accuracy to evaluate the predictive performance via leave-one-out cross-validation. Results: Rejection events were identified in 13 SPK patients (17.8%). In feature selection approach, it was possible to identify 10 features, namely: previous treatment for diabetes mellitus with long-term Insulin (U/I/day), type of dialysis (peritoneal dialysis, hemodialysis, or pre-emptive), de novo DSA, vPRA_Pre-Transplant (%), donor blood glucose, pancreas donor risk index (pDRI), recipient height, dialysis time (days), warm ischemia (minutes), recipient of intensive care (days). The results showed that the Naive Bayes and Support Vector Machine classifiers prediction performed very well, with an AUROC and classification accuracy of 0.97 and 0.87, respectively, in the first model and 0.96 and 0.94 in the second model. Conclusion: Our results indicated that it is feasible to develop successful classifiers for the prediction of graft rejection. The Naive Bayesian generated nomogram can be used for rejection probability prediction, thus supporting clinical decision making.
id RCAP_15a23d8adc6374b1c2231f689011c17c
oai_identifier_str oai:run.unl.pt:10362/158425
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Pancreas Rejection in the Artificial Intelligence EraNew Tool for Signal Patients at Riskallograft rejectionallograft survivalartificial intelligencemachine learningpancreas transplantationpatient risk managementMedicine (miscellaneous)SDG 3 - Good Health and Well-beingIntroduction: Pancreas transplantation is currently the only treatment that can re-establish normal endocrine pancreatic function. Despite all efforts, pancreas allograft survival and rejection remain major clinical problems. The purpose of this study was to identify features that could signal patients at risk of pancreas allograft rejection. Methods: We collected 74 features from 79 patients who underwent simultaneous pancreas–kidney transplantation (SPK) and used two widely-applicable classification methods, the Naive Bayesian Classifier and Support Vector Machine, to build predictive models. We used the area under the receiver operating characteristic curve and classification accuracy to evaluate the predictive performance via leave-one-out cross-validation. Results: Rejection events were identified in 13 SPK patients (17.8%). In feature selection approach, it was possible to identify 10 features, namely: previous treatment for diabetes mellitus with long-term Insulin (U/I/day), type of dialysis (peritoneal dialysis, hemodialysis, or pre-emptive), de novo DSA, vPRA_Pre-Transplant (%), donor blood glucose, pancreas donor risk index (pDRI), recipient height, dialysis time (days), warm ischemia (minutes), recipient of intensive care (days). The results showed that the Naive Bayes and Support Vector Machine classifiers prediction performed very well, with an AUROC and classification accuracy of 0.97 and 0.87, respectively, in the first model and 0.96 and 0.94 in the second model. Conclusion: Our results indicated that it is feasible to develop successful classifiers for the prediction of graft rejection. The Naive Bayesian generated nomogram can be used for rejection probability prediction, thus supporting clinical decision making.NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM)iNOVA4Health - pólo NMSRUNVigia, EmanuelRamalhete, LuísRibeiro, RitaBarros, InêsChumbinho, BeatrizFilipe, EditePena, AnaBicho, LuísNobre, AnaCarrelha, SofiaSobral, MafaldaLamelas, JorgeCoelho, João SantosFerreira, AníbalMarques, Hugo Pinto2023-09-28T22:19:36Z2023-072023-07-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10362/158425eng2075-4426PURE: 70559091https://doi.org/10.3390/jpm13071071info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:40:48Zoai:run.unl.pt:10362/158425Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:57:07.842888Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Pancreas Rejection in the Artificial Intelligence Era
New Tool for Signal Patients at Risk
title Pancreas Rejection in the Artificial Intelligence Era
spellingShingle Pancreas Rejection in the Artificial Intelligence Era
Vigia, Emanuel
allograft rejection
allograft survival
artificial intelligence
machine learning
pancreas transplantation
patient risk management
Medicine (miscellaneous)
SDG 3 - Good Health and Well-being
title_short Pancreas Rejection in the Artificial Intelligence Era
title_full Pancreas Rejection in the Artificial Intelligence Era
title_fullStr Pancreas Rejection in the Artificial Intelligence Era
title_full_unstemmed Pancreas Rejection in the Artificial Intelligence Era
title_sort Pancreas Rejection in the Artificial Intelligence Era
author Vigia, Emanuel
author_facet Vigia, Emanuel
Ramalhete, Luís
Ribeiro, Rita
Barros, Inês
Chumbinho, Beatriz
Filipe, Edite
Pena, Ana
Bicho, Luís
Nobre, Ana
Carrelha, Sofia
Sobral, Mafalda
Lamelas, Jorge
Coelho, João Santos
Ferreira, Aníbal
Marques, Hugo Pinto
author_role author
author2 Ramalhete, Luís
Ribeiro, Rita
Barros, Inês
Chumbinho, Beatriz
Filipe, Edite
Pena, Ana
Bicho, Luís
Nobre, Ana
Carrelha, Sofia
Sobral, Mafalda
Lamelas, Jorge
Coelho, João Santos
Ferreira, Aníbal
Marques, Hugo Pinto
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM)
iNOVA4Health - pólo NMS
RUN
dc.contributor.author.fl_str_mv Vigia, Emanuel
Ramalhete, Luís
Ribeiro, Rita
Barros, Inês
Chumbinho, Beatriz
Filipe, Edite
Pena, Ana
Bicho, Luís
Nobre, Ana
Carrelha, Sofia
Sobral, Mafalda
Lamelas, Jorge
Coelho, João Santos
Ferreira, Aníbal
Marques, Hugo Pinto
dc.subject.por.fl_str_mv allograft rejection
allograft survival
artificial intelligence
machine learning
pancreas transplantation
patient risk management
Medicine (miscellaneous)
SDG 3 - Good Health and Well-being
topic allograft rejection
allograft survival
artificial intelligence
machine learning
pancreas transplantation
patient risk management
Medicine (miscellaneous)
SDG 3 - Good Health and Well-being
description Introduction: Pancreas transplantation is currently the only treatment that can re-establish normal endocrine pancreatic function. Despite all efforts, pancreas allograft survival and rejection remain major clinical problems. The purpose of this study was to identify features that could signal patients at risk of pancreas allograft rejection. Methods: We collected 74 features from 79 patients who underwent simultaneous pancreas–kidney transplantation (SPK) and used two widely-applicable classification methods, the Naive Bayesian Classifier and Support Vector Machine, to build predictive models. We used the area under the receiver operating characteristic curve and classification accuracy to evaluate the predictive performance via leave-one-out cross-validation. Results: Rejection events were identified in 13 SPK patients (17.8%). In feature selection approach, it was possible to identify 10 features, namely: previous treatment for diabetes mellitus with long-term Insulin (U/I/day), type of dialysis (peritoneal dialysis, hemodialysis, or pre-emptive), de novo DSA, vPRA_Pre-Transplant (%), donor blood glucose, pancreas donor risk index (pDRI), recipient height, dialysis time (days), warm ischemia (minutes), recipient of intensive care (days). The results showed that the Naive Bayes and Support Vector Machine classifiers prediction performed very well, with an AUROC and classification accuracy of 0.97 and 0.87, respectively, in the first model and 0.96 and 0.94 in the second model. Conclusion: Our results indicated that it is feasible to develop successful classifiers for the prediction of graft rejection. The Naive Bayesian generated nomogram can be used for rejection probability prediction, thus supporting clinical decision making.
publishDate 2023
dc.date.none.fl_str_mv 2023-09-28T22:19:36Z
2023-07
2023-07-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/158425
url http://hdl.handle.net/10362/158425
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2075-4426
PURE: 70559091
https://doi.org/10.3390/jpm13071071
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138154511335424