On C1-generic chaotic systems in three-manifolds

Detalhes bibliográficos
Autor(a) principal: Bessa, Mário
Data de Publicação: 2013
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.2/13901
Resumo: Let M be a closed 3-dimensional Riemannian manifold. We exhibit a C1-residual subset of the set of volume-preserving 3-dimensional flows defined on very general manifolds M such that, any flow in this residual has zero metric entropy, has zero Lyapunov exponents and, nevertheless, is strongly chaotic in Devaney’s sense. Moreover, we also prove a corresponding version for the discrete-time case.
id RCAP_165fb9ce4fab985bd536da1d547581dd
oai_identifier_str oai:repositorioaberto.uab.pt:10400.2/13901
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling On C1-generic chaotic systems in three-manifoldsLet M be a closed 3-dimensional Riemannian manifold. We exhibit a C1-residual subset of the set of volume-preserving 3-dimensional flows defined on very general manifolds M such that, any flow in this residual has zero metric entropy, has zero Lyapunov exponents and, nevertheless, is strongly chaotic in Devaney’s sense. Moreover, we also prove a corresponding version for the discrete-time case.SpringerRepositório AbertoBessa, Mário2023-05-30T10:57:49Z20132013-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.2/13901engBessa, M. On C1-Generic Chaotic Systems in Three-Manifolds. Qual. Theory Dyn. Syst. 12, 323–334 (2013)10.1007/s12346-012-0091-zinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-16T15:46:13Zoai:repositorioaberto.uab.pt:10400.2/13901Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:52:48.188736Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv On C1-generic chaotic systems in three-manifolds
title On C1-generic chaotic systems in three-manifolds
spellingShingle On C1-generic chaotic systems in three-manifolds
Bessa, Mário
title_short On C1-generic chaotic systems in three-manifolds
title_full On C1-generic chaotic systems in three-manifolds
title_fullStr On C1-generic chaotic systems in three-manifolds
title_full_unstemmed On C1-generic chaotic systems in three-manifolds
title_sort On C1-generic chaotic systems in three-manifolds
author Bessa, Mário
author_facet Bessa, Mário
author_role author
dc.contributor.none.fl_str_mv Repositório Aberto
dc.contributor.author.fl_str_mv Bessa, Mário
description Let M be a closed 3-dimensional Riemannian manifold. We exhibit a C1-residual subset of the set of volume-preserving 3-dimensional flows defined on very general manifolds M such that, any flow in this residual has zero metric entropy, has zero Lyapunov exponents and, nevertheless, is strongly chaotic in Devaney’s sense. Moreover, we also prove a corresponding version for the discrete-time case.
publishDate 2013
dc.date.none.fl_str_mv 2013
2013-01-01T00:00:00Z
2023-05-30T10:57:49Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.2/13901
url http://hdl.handle.net/10400.2/13901
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Bessa, M. On C1-Generic Chaotic Systems in Three-Manifolds. Qual. Theory Dyn. Syst. 12, 323–334 (2013)
10.1007/s12346-012-0091-z
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799135121781030912