On C1-generic chaotic systems in three-manifolds
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.2/13901 |
Resumo: | Let M be a closed 3-dimensional Riemannian manifold. We exhibit a C1-residual subset of the set of volume-preserving 3-dimensional flows defined on very general manifolds M such that, any flow in this residual has zero metric entropy, has zero Lyapunov exponents and, nevertheless, is strongly chaotic in Devaney’s sense. Moreover, we also prove a corresponding version for the discrete-time case. |
id |
RCAP_165fb9ce4fab985bd536da1d547581dd |
---|---|
oai_identifier_str |
oai:repositorioaberto.uab.pt:10400.2/13901 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
On C1-generic chaotic systems in three-manifoldsLet M be a closed 3-dimensional Riemannian manifold. We exhibit a C1-residual subset of the set of volume-preserving 3-dimensional flows defined on very general manifolds M such that, any flow in this residual has zero metric entropy, has zero Lyapunov exponents and, nevertheless, is strongly chaotic in Devaney’s sense. Moreover, we also prove a corresponding version for the discrete-time case.SpringerRepositório AbertoBessa, Mário2023-05-30T10:57:49Z20132013-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.2/13901engBessa, M. On C1-Generic Chaotic Systems in Three-Manifolds. Qual. Theory Dyn. Syst. 12, 323–334 (2013)10.1007/s12346-012-0091-zinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-16T15:46:13Zoai:repositorioaberto.uab.pt:10400.2/13901Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:52:48.188736Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
On C1-generic chaotic systems in three-manifolds |
title |
On C1-generic chaotic systems in three-manifolds |
spellingShingle |
On C1-generic chaotic systems in three-manifolds Bessa, Mário |
title_short |
On C1-generic chaotic systems in three-manifolds |
title_full |
On C1-generic chaotic systems in three-manifolds |
title_fullStr |
On C1-generic chaotic systems in three-manifolds |
title_full_unstemmed |
On C1-generic chaotic systems in three-manifolds |
title_sort |
On C1-generic chaotic systems in three-manifolds |
author |
Bessa, Mário |
author_facet |
Bessa, Mário |
author_role |
author |
dc.contributor.none.fl_str_mv |
Repositório Aberto |
dc.contributor.author.fl_str_mv |
Bessa, Mário |
description |
Let M be a closed 3-dimensional Riemannian manifold. We exhibit a C1-residual subset of the set of volume-preserving 3-dimensional flows defined on very general manifolds M such that, any flow in this residual has zero metric entropy, has zero Lyapunov exponents and, nevertheless, is strongly chaotic in Devaney’s sense. Moreover, we also prove a corresponding version for the discrete-time case. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013 2013-01-01T00:00:00Z 2023-05-30T10:57:49Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.2/13901 |
url |
http://hdl.handle.net/10400.2/13901 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Bessa, M. On C1-Generic Chaotic Systems in Three-Manifolds. Qual. Theory Dyn. Syst. 12, 323–334 (2013) 10.1007/s12346-012-0091-z |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799135121781030912 |