Bootstrap and permutation tests in ANOVA for directional data

Detalhes bibliográficos
Autor(a) principal: Adelaide Figueiredo
Data de Publicação: 2017
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://repositorio.inesctec.pt/handle/123456789/7104
http://dx.doi.org/10.1007/s00180-017-0739-x
Resumo: The problem of testing the null hypothesis of a common direction across several populations defined on the hypersphere arises frequently when we deal with directional data. We may consider the Analysis of Variance (ANOVA) for testing such hypotheses. However, for the Watson distribution, a commonly used distribution for modeling axial data, the ANOVA test is only valid for large concentrations. So we suggest to use alternative tests, such as bootstrap and permutation tests in ANOVA. Then, we investigate the performance of these tests for data from Watson populations defined on the hypersphere.
id RCAP_167973d17a85cc440b47a213d969b1f2
oai_identifier_str oai:repositorio.inesctec.pt:123456789/7104
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Bootstrap and permutation tests in ANOVA for directional dataThe problem of testing the null hypothesis of a common direction across several populations defined on the hypersphere arises frequently when we deal with directional data. We may consider the Analysis of Variance (ANOVA) for testing such hypotheses. However, for the Watson distribution, a commonly used distribution for modeling axial data, the ANOVA test is only valid for large concentrations. So we suggest to use alternative tests, such as bootstrap and permutation tests in ANOVA. Then, we investigate the performance of these tests for data from Watson populations defined on the hypersphere.2018-01-19T15:39:30Z2017-01-01T00:00:00Z2017info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://repositorio.inesctec.pt/handle/123456789/7104http://dx.doi.org/10.1007/s00180-017-0739-xengAdelaide Figueiredoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-10-12T02:21:54Zoai:repositorio.inesctec.pt:123456789/7104Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-10-12T02:21:54Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Bootstrap and permutation tests in ANOVA for directional data
title Bootstrap and permutation tests in ANOVA for directional data
spellingShingle Bootstrap and permutation tests in ANOVA for directional data
Adelaide Figueiredo
title_short Bootstrap and permutation tests in ANOVA for directional data
title_full Bootstrap and permutation tests in ANOVA for directional data
title_fullStr Bootstrap and permutation tests in ANOVA for directional data
title_full_unstemmed Bootstrap and permutation tests in ANOVA for directional data
title_sort Bootstrap and permutation tests in ANOVA for directional data
author Adelaide Figueiredo
author_facet Adelaide Figueiredo
author_role author
dc.contributor.author.fl_str_mv Adelaide Figueiredo
description The problem of testing the null hypothesis of a common direction across several populations defined on the hypersphere arises frequently when we deal with directional data. We may consider the Analysis of Variance (ANOVA) for testing such hypotheses. However, for the Watson distribution, a commonly used distribution for modeling axial data, the ANOVA test is only valid for large concentrations. So we suggest to use alternative tests, such as bootstrap and permutation tests in ANOVA. Then, we investigate the performance of these tests for data from Watson populations defined on the hypersphere.
publishDate 2017
dc.date.none.fl_str_mv 2017-01-01T00:00:00Z
2017
2018-01-19T15:39:30Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.inesctec.pt/handle/123456789/7104
http://dx.doi.org/10.1007/s00180-017-0739-x
url http://repositorio.inesctec.pt/handle/123456789/7104
http://dx.doi.org/10.1007/s00180-017-0739-x
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817548589561282560