Prioritization of Software and System Requirements through Natural Language Processing for Testing Software
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10451/51304 |
Resumo: | Tese de mestrado, Ciência de Dados, Universidade de Lisboa, Faculdade de Ciências, 2021 |
id |
RCAP_16f1cb30761114c83a813d4d6bbf6c18 |
---|---|
oai_identifier_str |
oai:repositorio.ul.pt:10451/51304 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Prioritization of Software and System Requirements through Natural Language Processing for Testing SoftwareEngenharia de softwareTestagem de softwareProcessamento de linguagem naturalExtração de regras de associaçãoSistemas de recomendaçãoTeses de mestrado - 2021Departamento de InformáticaTese de mestrado, Ciência de Dados, Universidade de Lisboa, Faculdade de Ciências, 2021Safety¬critical systems have been a constant and increased presence in industrial production, such as railways and vehicles. These systems are highly configurable and must be intensively tested by system engineers before being deliverable to customers. This process is highly time¬consuming and might require associations between the product features and requirements demanded by customers. Requirement prioritization looks to recognize the most relevant requirements of a system, aiming to reduce the costs and time of the testing process. Machine Learning has been shown useful in helping engineers in this task, automating associations between features and requirements. However, its application can be more difficult when requirements are written in natural language and if a ground truth dataset does not exist with them. In our work, we present ARRINA, a Natural Language Processing¬based recommendation system able to extract and associate components from safety¬critical systems with their specifications written in natural language and process customer requirements and map them to components. The system integrates a Weight Association Rule Mining framework to extract the components and their associations and generates visualizations that can help engineers understand which components are generally introduced in project requirements. The system also includes a recommendation framework that can associate in put requirements to existing subsystems, reducing engineers’ effort in terms of requirement analysis and prioritization. We performed several experiments to evaluate the different components of ARRINA over four railway’s subsystems and input requirements. As a result, the system achieved 90% of accuracy, which denotes its importance in reducing the time¬consuming of engineers in discovering the correct subsystem links and prioritizing requirements for the testing process.Medeiros, Ibéria Vitória de Sousa, 1971-Repositório da Universidade de LisboaLeitão, Vasco Mascarenhas Paula Bastos2022-02-15T11:27:09Z202120212021-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10451/51304TID:202934730enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-08T16:55:55Zoai:repositorio.ul.pt:10451/51304Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:02:37.156733Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Prioritization of Software and System Requirements through Natural Language Processing for Testing Software |
title |
Prioritization of Software and System Requirements through Natural Language Processing for Testing Software |
spellingShingle |
Prioritization of Software and System Requirements through Natural Language Processing for Testing Software Leitão, Vasco Mascarenhas Paula Bastos Engenharia de software Testagem de software Processamento de linguagem natural Extração de regras de associação Sistemas de recomendação Teses de mestrado - 2021 Departamento de Informática |
title_short |
Prioritization of Software and System Requirements through Natural Language Processing for Testing Software |
title_full |
Prioritization of Software and System Requirements through Natural Language Processing for Testing Software |
title_fullStr |
Prioritization of Software and System Requirements through Natural Language Processing for Testing Software |
title_full_unstemmed |
Prioritization of Software and System Requirements through Natural Language Processing for Testing Software |
title_sort |
Prioritization of Software and System Requirements through Natural Language Processing for Testing Software |
author |
Leitão, Vasco Mascarenhas Paula Bastos |
author_facet |
Leitão, Vasco Mascarenhas Paula Bastos |
author_role |
author |
dc.contributor.none.fl_str_mv |
Medeiros, Ibéria Vitória de Sousa, 1971- Repositório da Universidade de Lisboa |
dc.contributor.author.fl_str_mv |
Leitão, Vasco Mascarenhas Paula Bastos |
dc.subject.por.fl_str_mv |
Engenharia de software Testagem de software Processamento de linguagem natural Extração de regras de associação Sistemas de recomendação Teses de mestrado - 2021 Departamento de Informática |
topic |
Engenharia de software Testagem de software Processamento de linguagem natural Extração de regras de associação Sistemas de recomendação Teses de mestrado - 2021 Departamento de Informática |
description |
Tese de mestrado, Ciência de Dados, Universidade de Lisboa, Faculdade de Ciências, 2021 |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 2021 2021-01-01T00:00:00Z 2022-02-15T11:27:09Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10451/51304 TID:202934730 |
url |
http://hdl.handle.net/10451/51304 |
identifier_str_mv |
TID:202934730 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134576069574656 |