Thermal Infrared Sensing for Near Real-Time Data-Driven Fire Detection and Monitoring Systems
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/106728 https://doi.org/10.3390/s20236803 |
Resumo: | With the increasing interest in leveraging mobile robotics for fire detection and monitoring arises the need to design recognition technology systems for these extreme environments. This work focuses on evaluating the sensing capabilities and image processing pipeline of thermal imaging sensors for fire detection applications, paving the way for the development of autonomous systems for early warning and monitoring of fire events. The contributions of this work are threefold. First, we overview image processing algorithms used in thermal imaging regarding data compression and image enhancement. Second, we present a method for data-driven thermal imaging analysis designed for fire situation awareness in robotic perception. A study is undertaken to test the behavior of the thermal cameras in controlled fire scenarios, followed by an in-depth analysis of the experimental data, which reveals the inner workings of these sensors. Third, we discuss key takeaways for the integration of thermal cameras in robotic perception pipelines for autonomous unmanned aerial vehicle (UAV)-based fire surveillance. |
id |
RCAP_17607960fc37192d11b1ae1b2ef74b04 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/106728 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Thermal Infrared Sensing for Near Real-Time Data-Driven Fire Detection and Monitoring Systemsthermal infrared camerasthermal imaging datawildfire detectionactive fire monitoringearly warning systemsunmanned aerial systemsWith the increasing interest in leveraging mobile robotics for fire detection and monitoring arises the need to design recognition technology systems for these extreme environments. This work focuses on evaluating the sensing capabilities and image processing pipeline of thermal imaging sensors for fire detection applications, paving the way for the development of autonomous systems for early warning and monitoring of fire events. The contributions of this work are threefold. First, we overview image processing algorithms used in thermal imaging regarding data compression and image enhancement. Second, we present a method for data-driven thermal imaging analysis designed for fire situation awareness in robotic perception. A study is undertaken to test the behavior of the thermal cameras in controlled fire scenarios, followed by an in-depth analysis of the experimental data, which reveals the inner workings of these sensors. Third, we discuss key takeaways for the integration of thermal cameras in robotic perception pipelines for autonomous unmanned aerial vehicle (UAV)-based fire surveillance.MDPI2020-11-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/106728http://hdl.handle.net/10316/106728https://doi.org/10.3390/s20236803eng1424-8220332604981424-8220Sousa, Maria JoãoMoutinho, AlexandraAlmeida, Miguelinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-04-20T07:58:03Zoai:estudogeral.uc.pt:10316/106728Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:23:08.512940Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Thermal Infrared Sensing for Near Real-Time Data-Driven Fire Detection and Monitoring Systems |
title |
Thermal Infrared Sensing for Near Real-Time Data-Driven Fire Detection and Monitoring Systems |
spellingShingle |
Thermal Infrared Sensing for Near Real-Time Data-Driven Fire Detection and Monitoring Systems Sousa, Maria João thermal infrared cameras thermal imaging data wildfire detection active fire monitoring early warning systems unmanned aerial systems |
title_short |
Thermal Infrared Sensing for Near Real-Time Data-Driven Fire Detection and Monitoring Systems |
title_full |
Thermal Infrared Sensing for Near Real-Time Data-Driven Fire Detection and Monitoring Systems |
title_fullStr |
Thermal Infrared Sensing for Near Real-Time Data-Driven Fire Detection and Monitoring Systems |
title_full_unstemmed |
Thermal Infrared Sensing for Near Real-Time Data-Driven Fire Detection and Monitoring Systems |
title_sort |
Thermal Infrared Sensing for Near Real-Time Data-Driven Fire Detection and Monitoring Systems |
author |
Sousa, Maria João |
author_facet |
Sousa, Maria João Moutinho, Alexandra Almeida, Miguel |
author_role |
author |
author2 |
Moutinho, Alexandra Almeida, Miguel |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Sousa, Maria João Moutinho, Alexandra Almeida, Miguel |
dc.subject.por.fl_str_mv |
thermal infrared cameras thermal imaging data wildfire detection active fire monitoring early warning systems unmanned aerial systems |
topic |
thermal infrared cameras thermal imaging data wildfire detection active fire monitoring early warning systems unmanned aerial systems |
description |
With the increasing interest in leveraging mobile robotics for fire detection and monitoring arises the need to design recognition technology systems for these extreme environments. This work focuses on evaluating the sensing capabilities and image processing pipeline of thermal imaging sensors for fire detection applications, paving the way for the development of autonomous systems for early warning and monitoring of fire events. The contributions of this work are threefold. First, we overview image processing algorithms used in thermal imaging regarding data compression and image enhancement. Second, we present a method for data-driven thermal imaging analysis designed for fire situation awareness in robotic perception. A study is undertaken to test the behavior of the thermal cameras in controlled fire scenarios, followed by an in-depth analysis of the experimental data, which reveals the inner workings of these sensors. Third, we discuss key takeaways for the integration of thermal cameras in robotic perception pipelines for autonomous unmanned aerial vehicle (UAV)-based fire surveillance. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-11-28 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/106728 http://hdl.handle.net/10316/106728 https://doi.org/10.3390/s20236803 |
url |
http://hdl.handle.net/10316/106728 https://doi.org/10.3390/s20236803 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1424-8220 33260498 1424-8220 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134119430455296 |