Predicting Football Players Potential: Internship with Sporting Clube de Portugal
Autor(a) principal: | |
---|---|
Data de Publicação: | 2024 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/164849 |
Resumo: | Project Work presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Data Science |
id |
RCAP_17672912f00e07b968a3855474bb64dd |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/164849 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Predicting Football Players Potential: Internship with Sporting Clube de PortugalFootballRatingPredictionSportingMachine LearningSDG 9 - Industry, innovation and infrastructureDomínio/Área Científica::Ciências Naturais::Ciências da Computação e da InformaçãoProject Work presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Data ScienceThis report is about the internship held at Sporting Clube de Portugal between September 2022 and June 2023. The goal of the internship was to work on football match data, and predict future ratings of players, in order to assist the scouting/analytics team with the transfer market. The main target of this project was to predict the potential of younger players, i.e., between 17 and 22, but it could and will still be used with players in other age ranges. A model that could predict the potential of football player would be a game changer if it had good accuracy, because it would allow to find players before other teams do. Many approaches were tried during the development of this project, and the main steps were literature review, exploratory data analysis, feature selection, creating dummy variables (one hot encoding), scaling, feature engineering, train test split and testing different models, with different datasets and hyperparameters. In the end of this paper, it is found that it is in fact possible to predict the potential of football player with the current data available, with quite good accuracy.Damásio, Bruno Miguel PintoFerreira, MiguelRUNDias, José Maria Vinagre Pereira2024-03-13T11:07:57Z2024-02-022024-02-02T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/164849TID:203544447enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-18T01:46:35Zoai:run.unl.pt:10362/164849Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T04:02:02.404453Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Predicting Football Players Potential: Internship with Sporting Clube de Portugal |
title |
Predicting Football Players Potential: Internship with Sporting Clube de Portugal |
spellingShingle |
Predicting Football Players Potential: Internship with Sporting Clube de Portugal Dias, José Maria Vinagre Pereira Football Rating Prediction Sporting Machine Learning SDG 9 - Industry, innovation and infrastructure Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação |
title_short |
Predicting Football Players Potential: Internship with Sporting Clube de Portugal |
title_full |
Predicting Football Players Potential: Internship with Sporting Clube de Portugal |
title_fullStr |
Predicting Football Players Potential: Internship with Sporting Clube de Portugal |
title_full_unstemmed |
Predicting Football Players Potential: Internship with Sporting Clube de Portugal |
title_sort |
Predicting Football Players Potential: Internship with Sporting Clube de Portugal |
author |
Dias, José Maria Vinagre Pereira |
author_facet |
Dias, José Maria Vinagre Pereira |
author_role |
author |
dc.contributor.none.fl_str_mv |
Damásio, Bruno Miguel Pinto Ferreira, Miguel RUN |
dc.contributor.author.fl_str_mv |
Dias, José Maria Vinagre Pereira |
dc.subject.por.fl_str_mv |
Football Rating Prediction Sporting Machine Learning SDG 9 - Industry, innovation and infrastructure Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação |
topic |
Football Rating Prediction Sporting Machine Learning SDG 9 - Industry, innovation and infrastructure Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação |
description |
Project Work presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Data Science |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-03-13T11:07:57Z 2024-02-02 2024-02-02T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/164849 TID:203544447 |
url |
http://hdl.handle.net/10362/164849 |
identifier_str_mv |
TID:203544447 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138192645947392 |