A bi-objective feature selection algorithm for large omics datasets
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.2/7648 |
Resumo: | Special Issue: Fourth special issue on knowledge discovery and business intelligence. |
id |
RCAP_17c1d58e25ba796bcb7b189dc47e5144 |
---|---|
oai_identifier_str |
oai:repositorioaberto.uab.pt:10400.2/7648 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A bi-objective feature selection algorithm for large omics datasetsFeature selectionLogical analysis of dataHeuristic decompositionBi-objective optimizationSpecial Issue: Fourth special issue on knowledge discovery and business intelligence.Feature selection is one of the most important concepts in data mining when dimensionality reduction is needed. The performance measures of feature selection encompass predictive accuracy and result comprehensibility. Consistency based methods are a significant category of feature selection research that substantially improves the comprehensibility of the result using the parsimony principle. In this work, the bi-objective version of the algorithm Logical Analysis of Inconsistent Data is applied to large volumes of data. In order to deal with hundreds of thousands of attributes, heuristic decomposition uses parallel processing to solve a set covering problem and a cross-validation technique. The bi-objective solutions contain the number of reduced features and the accuracy. The algorithm is applied to omics datasets with genome-like characteristics of patients with rare diseases.The authors would like to thank the FCT support UID/Multi/04046/2013. This work used the EGI, European Grid Infrastructure, with the support of the IBERGRID, Iberian Grid Infrastructure, and INCD (Portugal).Wiley Online LibraryRepositório AbertoCavique, LuísMendes, Armando B.Martiniano, Hugo F. M. C.Correia, Luís2018-11-06T14:00:31Z20182018-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.2/7648eng0266-4720https://onlinelibrary.wiley.com/doi/abs/10.1111/exsy.12301info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-16T15:27:51Zoai:repositorioaberto.uab.pt:10400.2/7648Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:47:54.051846Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A bi-objective feature selection algorithm for large omics datasets |
title |
A bi-objective feature selection algorithm for large omics datasets |
spellingShingle |
A bi-objective feature selection algorithm for large omics datasets Cavique, Luís Feature selection Logical analysis of data Heuristic decomposition Bi-objective optimization |
title_short |
A bi-objective feature selection algorithm for large omics datasets |
title_full |
A bi-objective feature selection algorithm for large omics datasets |
title_fullStr |
A bi-objective feature selection algorithm for large omics datasets |
title_full_unstemmed |
A bi-objective feature selection algorithm for large omics datasets |
title_sort |
A bi-objective feature selection algorithm for large omics datasets |
author |
Cavique, Luís |
author_facet |
Cavique, Luís Mendes, Armando B. Martiniano, Hugo F. M. C. Correia, Luís |
author_role |
author |
author2 |
Mendes, Armando B. Martiniano, Hugo F. M. C. Correia, Luís |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Repositório Aberto |
dc.contributor.author.fl_str_mv |
Cavique, Luís Mendes, Armando B. Martiniano, Hugo F. M. C. Correia, Luís |
dc.subject.por.fl_str_mv |
Feature selection Logical analysis of data Heuristic decomposition Bi-objective optimization |
topic |
Feature selection Logical analysis of data Heuristic decomposition Bi-objective optimization |
description |
Special Issue: Fourth special issue on knowledge discovery and business intelligence. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-11-06T14:00:31Z 2018 2018-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.2/7648 |
url |
http://hdl.handle.net/10400.2/7648 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0266-4720 https://onlinelibrary.wiley.com/doi/abs/10.1111/exsy.12301 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Wiley Online Library |
publisher.none.fl_str_mv |
Wiley Online Library |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799135056979034112 |