On Herbrand’s Theorem for Hybrid Logic
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/25811 |
Resumo: | The original version of Herbrand’s theorem [8] for first-order logic provided the theoretical underpinning for automated theorem proving, by allowing a constructive method for associating with each first-order formula χ a sequence of quantifier-free formulas χ1, χ2, χ3, · · · so that χ has a first-order proof if and only if some χi is a tautology. Some other versions of Herbrand’s theorem have been developed for classical logic, such as the one in [6], which states that a set of quantifier-free sentences is satisfiable if and only if it is propositionally satisfiable. The literature concerning versions of Herbrand’s theorem proved in the context of non-classical logics is meager. We aim to investigate in this paper two versions of Herbrand’s theorem for hybrid logic, which is an extension of modal logic that is expressive enough so as to allow identifying specific sates of the corresponding models, as well as describing the accessibility relation that connects these states, thus being completely suitable to deal with relational structures [3]. Our main results state that a set of satisfaction statements is satisfiable in a hybrid interpretation if and only if it is propositionally satisfiable |
id |
RCAP_17d99594460e89b63160f73a88ecc359 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/25811 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
On Herbrand’s Theorem for Hybrid LogicThe original version of Herbrand’s theorem [8] for first-order logic provided the theoretical underpinning for automated theorem proving, by allowing a constructive method for associating with each first-order formula χ a sequence of quantifier-free formulas χ1, χ2, χ3, · · · so that χ has a first-order proof if and only if some χi is a tautology. Some other versions of Herbrand’s theorem have been developed for classical logic, such as the one in [6], which states that a set of quantifier-free sentences is satisfiable if and only if it is propositionally satisfiable. The literature concerning versions of Herbrand’s theorem proved in the context of non-classical logics is meager. We aim to investigate in this paper two versions of Herbrand’s theorem for hybrid logic, which is an extension of modal logic that is expressive enough so as to allow identifying specific sates of the corresponding models, as well as describing the accessibility relation that connects these states, thus being completely suitable to deal with relational structures [3]. Our main results state that a set of satisfaction statements is satisfiable in a hybrid interpretation if and only if it is propositionally satisfiableColege Publications2020-04-01T00:00:00Z2019-04-01T00:00:00Z2019-04-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/25811eng2055 3706Costa, DianaMartins, Manuel A.Marcos, Joãoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:49:58Zoai:ria.ua.pt:10773/25811Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:58:55.475956Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
On Herbrand’s Theorem for Hybrid Logic |
title |
On Herbrand’s Theorem for Hybrid Logic |
spellingShingle |
On Herbrand’s Theorem for Hybrid Logic Costa, Diana |
title_short |
On Herbrand’s Theorem for Hybrid Logic |
title_full |
On Herbrand’s Theorem for Hybrid Logic |
title_fullStr |
On Herbrand’s Theorem for Hybrid Logic |
title_full_unstemmed |
On Herbrand’s Theorem for Hybrid Logic |
title_sort |
On Herbrand’s Theorem for Hybrid Logic |
author |
Costa, Diana |
author_facet |
Costa, Diana Martins, Manuel A. Marcos, João |
author_role |
author |
author2 |
Martins, Manuel A. Marcos, João |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Costa, Diana Martins, Manuel A. Marcos, João |
description |
The original version of Herbrand’s theorem [8] for first-order logic provided the theoretical underpinning for automated theorem proving, by allowing a constructive method for associating with each first-order formula χ a sequence of quantifier-free formulas χ1, χ2, χ3, · · · so that χ has a first-order proof if and only if some χi is a tautology. Some other versions of Herbrand’s theorem have been developed for classical logic, such as the one in [6], which states that a set of quantifier-free sentences is satisfiable if and only if it is propositionally satisfiable. The literature concerning versions of Herbrand’s theorem proved in the context of non-classical logics is meager. We aim to investigate in this paper two versions of Herbrand’s theorem for hybrid logic, which is an extension of modal logic that is expressive enough so as to allow identifying specific sates of the corresponding models, as well as describing the accessibility relation that connects these states, thus being completely suitable to deal with relational structures [3]. Our main results state that a set of satisfaction statements is satisfiable in a hybrid interpretation if and only if it is propositionally satisfiable |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-04-01T00:00:00Z 2019-04-01 2020-04-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/25811 |
url |
http://hdl.handle.net/10773/25811 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2055 3706 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Colege Publications |
publisher.none.fl_str_mv |
Colege Publications |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137643397644288 |