Lagrange multipliers for evolution problems with constraints on the derivatives

Detalhes bibliográficos
Autor(a) principal: Azevedo, Assis
Data de Publicação: 2021
Outros Autores: Rodrigues, José Francisco, Santos, Lisa
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/1822/72877
Resumo: We prove the existence of generalized Lagrange multipliers for a class of evolution problems for linear differential operators of different types subject to constraints on the derivatives. Those Lagrange multipliers and the respective solutions are stable for the vanishing of the coercive parameter and are naturally associated with evolution variational inequalities with time-dependent convex sets of gradient type. We apply these results to the sandpile problem, to superconductivity problems, to flows of thick fluids, to problems with the biharmonic operator, and to first order vector fields of subelliptic type.
id RCAP_184ca184ba4dce56aeb9b4499d6bc150
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/72877
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Lagrange multipliers for evolution problems with constraints on the derivativesvariational inequalitiessandpile problemsuperconductivity problemflow of thick fluidsproblems with the biharmonic operatorfirst order vector fields of sunelliptic typesuperconductivity problemsflows of thick fluidsfirst order vector fields of subelliptic typeCiências Naturais::MatemáticasScience & TechnologyWe prove the existence of generalized Lagrange multipliers for a class of evolution problems for linear differential operators of different types subject to constraints on the derivatives. Those Lagrange multipliers and the respective solutions are stable for the vanishing of the coercive parameter and are naturally associated with evolution variational inequalities with time-dependent convex sets of gradient type. We apply these results to the sandpile problem, to superconductivity problems, to flows of thick fluids, to problems with the biharmonic operator, and to first order vector fields of subelliptic type.The research of A. Azevedo and L. Santos was partially supported by the Research Centre of Mathematics of the University of Minho with the Portuguese Funds from the “Fundação para a Ciência e a Tecnologia,” through the Project UID/MAT/00013/2013, and the one by J. F. Rodrigues was done partially in the framework of the Project PTDC/MAT-PUR/28686/2017.Ural PressUniversidade do MinhoAzevedo, AssisRodrigues, José FranciscoSantos, Lisa20212021-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/72877engA. Azevedo, J.-F. Rodrigues, L. Santos, “Lagrange multipliers for evolution problems with constraints on the derivatives”, Algebra i Analiz, 32:3 (2020), 65–83.0234-085210.1090/spmj/1655http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=aa&paperid=1700&option_lang=enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-13T01:26:36Zoai:repositorium.sdum.uminho.pt:1822/72877Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:44:46.516073Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Lagrange multipliers for evolution problems with constraints on the derivatives
title Lagrange multipliers for evolution problems with constraints on the derivatives
spellingShingle Lagrange multipliers for evolution problems with constraints on the derivatives
Azevedo, Assis
variational inequalities
sandpile problem
superconductivity problem
flow of thick fluids
problems with the biharmonic operator
first order vector fields of sunelliptic type
superconductivity problems
flows of thick fluids
first order vector fields of subelliptic type
Ciências Naturais::Matemáticas
Science & Technology
title_short Lagrange multipliers for evolution problems with constraints on the derivatives
title_full Lagrange multipliers for evolution problems with constraints on the derivatives
title_fullStr Lagrange multipliers for evolution problems with constraints on the derivatives
title_full_unstemmed Lagrange multipliers for evolution problems with constraints on the derivatives
title_sort Lagrange multipliers for evolution problems with constraints on the derivatives
author Azevedo, Assis
author_facet Azevedo, Assis
Rodrigues, José Francisco
Santos, Lisa
author_role author
author2 Rodrigues, José Francisco
Santos, Lisa
author2_role author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Azevedo, Assis
Rodrigues, José Francisco
Santos, Lisa
dc.subject.por.fl_str_mv variational inequalities
sandpile problem
superconductivity problem
flow of thick fluids
problems with the biharmonic operator
first order vector fields of sunelliptic type
superconductivity problems
flows of thick fluids
first order vector fields of subelliptic type
Ciências Naturais::Matemáticas
Science & Technology
topic variational inequalities
sandpile problem
superconductivity problem
flow of thick fluids
problems with the biharmonic operator
first order vector fields of sunelliptic type
superconductivity problems
flows of thick fluids
first order vector fields of subelliptic type
Ciências Naturais::Matemáticas
Science & Technology
description We prove the existence of generalized Lagrange multipliers for a class of evolution problems for linear differential operators of different types subject to constraints on the derivatives. Those Lagrange multipliers and the respective solutions are stable for the vanishing of the coercive parameter and are naturally associated with evolution variational inequalities with time-dependent convex sets of gradient type. We apply these results to the sandpile problem, to superconductivity problems, to flows of thick fluids, to problems with the biharmonic operator, and to first order vector fields of subelliptic type.
publishDate 2021
dc.date.none.fl_str_mv 2021
2021-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1822/72877
url https://hdl.handle.net/1822/72877
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv A. Azevedo, J.-F. Rodrigues, L. Santos, “Lagrange multipliers for evolution problems with constraints on the derivatives”, Algebra i Analiz, 32:3 (2020), 65–83.
0234-0852
10.1090/spmj/1655
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=aa&paperid=1700&option_lang=eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Ural Press
publisher.none.fl_str_mv Ural Press
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133009692065792