Lagrange multipliers for evolution problems with constraints on the derivatives
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/1822/72877 |
Resumo: | We prove the existence of generalized Lagrange multipliers for a class of evolution problems for linear differential operators of different types subject to constraints on the derivatives. Those Lagrange multipliers and the respective solutions are stable for the vanishing of the coercive parameter and are naturally associated with evolution variational inequalities with time-dependent convex sets of gradient type. We apply these results to the sandpile problem, to superconductivity problems, to flows of thick fluids, to problems with the biharmonic operator, and to first order vector fields of subelliptic type. |
id |
RCAP_184ca184ba4dce56aeb9b4499d6bc150 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/72877 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Lagrange multipliers for evolution problems with constraints on the derivativesvariational inequalitiessandpile problemsuperconductivity problemflow of thick fluidsproblems with the biharmonic operatorfirst order vector fields of sunelliptic typesuperconductivity problemsflows of thick fluidsfirst order vector fields of subelliptic typeCiências Naturais::MatemáticasScience & TechnologyWe prove the existence of generalized Lagrange multipliers for a class of evolution problems for linear differential operators of different types subject to constraints on the derivatives. Those Lagrange multipliers and the respective solutions are stable for the vanishing of the coercive parameter and are naturally associated with evolution variational inequalities with time-dependent convex sets of gradient type. We apply these results to the sandpile problem, to superconductivity problems, to flows of thick fluids, to problems with the biharmonic operator, and to first order vector fields of subelliptic type.The research of A. Azevedo and L. Santos was partially supported by the Research Centre of Mathematics of the University of Minho with the Portuguese Funds from the “Fundação para a Ciência e a Tecnologia,” through the Project UID/MAT/00013/2013, and the one by J. F. Rodrigues was done partially in the framework of the Project PTDC/MAT-PUR/28686/2017.Ural PressUniversidade do MinhoAzevedo, AssisRodrigues, José FranciscoSantos, Lisa20212021-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/72877engA. Azevedo, J.-F. Rodrigues, L. Santos, “Lagrange multipliers for evolution problems with constraints on the derivatives”, Algebra i Analiz, 32:3 (2020), 65–83.0234-085210.1090/spmj/1655http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=aa&paperid=1700&option_lang=enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-13T01:26:36Zoai:repositorium.sdum.uminho.pt:1822/72877Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:44:46.516073Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Lagrange multipliers for evolution problems with constraints on the derivatives |
title |
Lagrange multipliers for evolution problems with constraints on the derivatives |
spellingShingle |
Lagrange multipliers for evolution problems with constraints on the derivatives Azevedo, Assis variational inequalities sandpile problem superconductivity problem flow of thick fluids problems with the biharmonic operator first order vector fields of sunelliptic type superconductivity problems flows of thick fluids first order vector fields of subelliptic type Ciências Naturais::Matemáticas Science & Technology |
title_short |
Lagrange multipliers for evolution problems with constraints on the derivatives |
title_full |
Lagrange multipliers for evolution problems with constraints on the derivatives |
title_fullStr |
Lagrange multipliers for evolution problems with constraints on the derivatives |
title_full_unstemmed |
Lagrange multipliers for evolution problems with constraints on the derivatives |
title_sort |
Lagrange multipliers for evolution problems with constraints on the derivatives |
author |
Azevedo, Assis |
author_facet |
Azevedo, Assis Rodrigues, José Francisco Santos, Lisa |
author_role |
author |
author2 |
Rodrigues, José Francisco Santos, Lisa |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Azevedo, Assis Rodrigues, José Francisco Santos, Lisa |
dc.subject.por.fl_str_mv |
variational inequalities sandpile problem superconductivity problem flow of thick fluids problems with the biharmonic operator first order vector fields of sunelliptic type superconductivity problems flows of thick fluids first order vector fields of subelliptic type Ciências Naturais::Matemáticas Science & Technology |
topic |
variational inequalities sandpile problem superconductivity problem flow of thick fluids problems with the biharmonic operator first order vector fields of sunelliptic type superconductivity problems flows of thick fluids first order vector fields of subelliptic type Ciências Naturais::Matemáticas Science & Technology |
description |
We prove the existence of generalized Lagrange multipliers for a class of evolution problems for linear differential operators of different types subject to constraints on the derivatives. Those Lagrange multipliers and the respective solutions are stable for the vanishing of the coercive parameter and are naturally associated with evolution variational inequalities with time-dependent convex sets of gradient type. We apply these results to the sandpile problem, to superconductivity problems, to flows of thick fluids, to problems with the biharmonic operator, and to first order vector fields of subelliptic type. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 2021-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/72877 |
url |
https://hdl.handle.net/1822/72877 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
A. Azevedo, J.-F. Rodrigues, L. Santos, “Lagrange multipliers for evolution problems with constraints on the derivatives”, Algebra i Analiz, 32:3 (2020), 65–83. 0234-0852 10.1090/spmj/1655 http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=aa&paperid=1700&option_lang=eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Ural Press |
publisher.none.fl_str_mv |
Ural Press |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133009692065792 |