Lamb meat quality assessment by support vector machines

Detalhes bibliográficos
Autor(a) principal: Cortez, Paulo
Data de Publicação: 2006
Outros Autores: Portelinha, Manuel, Rodrigues, Sandra, Cadavez, Vasco, Teixeira, Alfredo
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10198/858
Resumo: The correct assessment of meat quality (i.e., to fulfill the consumer's needs) is crucial element within the meat industry. Although there are several factors that affect the perception of taste, tenderness is considered the most important characteristic. In this paper, a Feature Selection procedure, based on a Sensitivity Analysis, is combined with a Support Vector Machine, in order to predict lamb meat tenderness. This real-world problem is defined in terms of two difficult regression tasks, by modeling objective (e.g. Warner-Bratzler Shear force) and subjective (e.g. human taste panel) measurements. In both cases, the proposed solution is competitive when compared with other neural (e.g. Multilayer Perceptron) and Multiple Regression approaches.
id RCAP_184dc5b54a3f7b046c39450234866823
oai_identifier_str oai:bibliotecadigital.ipb.pt:10198/858
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Lamb meat quality assessment by support vector machinesRegressionMultilayer perceptronsSupport vector machinesMeat qualityData miningFeature selectionThe correct assessment of meat quality (i.e., to fulfill the consumer's needs) is crucial element within the meat industry. Although there are several factors that affect the perception of taste, tenderness is considered the most important characteristic. In this paper, a Feature Selection procedure, based on a Sensitivity Analysis, is combined with a Support Vector Machine, in order to predict lamb meat tenderness. This real-world problem is defined in terms of two difficult regression tasks, by modeling objective (e.g. Warner-Bratzler Shear force) and subjective (e.g. human taste panel) measurements. In both cases, the proposed solution is competitive when compared with other neural (e.g. Multilayer Perceptron) and Multiple Regression approaches.SpringerBiblioteca Digital do IPBCortez, PauloPortelinha, ManuelRodrigues, SandraCadavez, VascoTeixeira, Alfredo2008-09-16T14:14:50Z20062006-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10198/858engCortez, P.; Portelinha, M.; Rodrigues, Sandra; Cadavez, Vasco; Teixeira, Alfredo (2006). Lamb meat quality assessment by support vector machines. Neural Processing Letters. ISSN 1370-4621. 24:1, p. 41-511370-462110.1007/s11063-006-9009-6info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-21T10:04:03Zoai:bibliotecadigital.ipb.pt:10198/858Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:54:30.135960Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Lamb meat quality assessment by support vector machines
title Lamb meat quality assessment by support vector machines
spellingShingle Lamb meat quality assessment by support vector machines
Cortez, Paulo
Regression
Multilayer perceptrons
Support vector machines
Meat quality
Data mining
Feature selection
title_short Lamb meat quality assessment by support vector machines
title_full Lamb meat quality assessment by support vector machines
title_fullStr Lamb meat quality assessment by support vector machines
title_full_unstemmed Lamb meat quality assessment by support vector machines
title_sort Lamb meat quality assessment by support vector machines
author Cortez, Paulo
author_facet Cortez, Paulo
Portelinha, Manuel
Rodrigues, Sandra
Cadavez, Vasco
Teixeira, Alfredo
author_role author
author2 Portelinha, Manuel
Rodrigues, Sandra
Cadavez, Vasco
Teixeira, Alfredo
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Biblioteca Digital do IPB
dc.contributor.author.fl_str_mv Cortez, Paulo
Portelinha, Manuel
Rodrigues, Sandra
Cadavez, Vasco
Teixeira, Alfredo
dc.subject.por.fl_str_mv Regression
Multilayer perceptrons
Support vector machines
Meat quality
Data mining
Feature selection
topic Regression
Multilayer perceptrons
Support vector machines
Meat quality
Data mining
Feature selection
description The correct assessment of meat quality (i.e., to fulfill the consumer's needs) is crucial element within the meat industry. Although there are several factors that affect the perception of taste, tenderness is considered the most important characteristic. In this paper, a Feature Selection procedure, based on a Sensitivity Analysis, is combined with a Support Vector Machine, in order to predict lamb meat tenderness. This real-world problem is defined in terms of two difficult regression tasks, by modeling objective (e.g. Warner-Bratzler Shear force) and subjective (e.g. human taste panel) measurements. In both cases, the proposed solution is competitive when compared with other neural (e.g. Multilayer Perceptron) and Multiple Regression approaches.
publishDate 2006
dc.date.none.fl_str_mv 2006
2006-01-01T00:00:00Z
2008-09-16T14:14:50Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10198/858
url http://hdl.handle.net/10198/858
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Cortez, P.; Portelinha, M.; Rodrigues, Sandra; Cadavez, Vasco; Teixeira, Alfredo (2006). Lamb meat quality assessment by support vector machines. Neural Processing Letters. ISSN 1370-4621. 24:1, p. 41-51
1370-4621
10.1007/s11063-006-9009-6
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799135143603994624