Multiaxial Fatigue Life Prediction on S355 Structural and Offshore Steel Using the SKS Critical Plane Model

Detalhes bibliográficos
Autor(a) principal: Cruces, Alejandro
Data de Publicação: 2018
Outros Autores: Lopez-Crespo, Pablo, Moreno, Belen, Antunes, Fernando V.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/101852
https://doi.org/10.3390/met8121060
Resumo: This work analyses the prediction capabilities of a recently developed critical plane model, called the SKS method. The study uses multiaxial fatigue data for S355-J2G3 steel, with in-phase and 90 out-of-phase sinusoidal axial-torsional straining in both the low cycle fatigue and high cycle fatigue ranges. The SKS damage parameter includes the effect of hardening, mean shear stress and the interaction between shear and normal stress on the critical plane. The collapse and the prediction capabilities of the SKS critical plane damage parameter are compared to well-established critical plane models, namelyWang-Brown, Fatemi-Socie, Liu I and Liu II models. The differences between models are discussed in detail from the basis of the methodology and the life results. The collapse capacity of the SKS damage parameter presents the best results. The SKS model produced the second-best results for the different types of multiaxial loads studied.
id RCAP_1874a740a0a92ec8e202c0be36cc1bc2
oai_identifier_str oai:estudogeral.uc.pt:10316/101852
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Multiaxial Fatigue Life Prediction on S355 Structural and Offshore Steel Using the SKS Critical Plane Modelcritical plane modelmultiaxial fatiguenon-proportionalS355-J2G3This work analyses the prediction capabilities of a recently developed critical plane model, called the SKS method. The study uses multiaxial fatigue data for S355-J2G3 steel, with in-phase and 90 out-of-phase sinusoidal axial-torsional straining in both the low cycle fatigue and high cycle fatigue ranges. The SKS damage parameter includes the effect of hardening, mean shear stress and the interaction between shear and normal stress on the critical plane. The collapse and the prediction capabilities of the SKS critical plane damage parameter are compared to well-established critical plane models, namelyWang-Brown, Fatemi-Socie, Liu I and Liu II models. The differences between models are discussed in detail from the basis of the methodology and the life results. The collapse capacity of the SKS damage parameter presents the best results. The SKS model produced the second-best results for the different types of multiaxial loads studied.2018info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/101852http://hdl.handle.net/10316/101852https://doi.org/10.3390/met8121060eng2075-4701Cruces, AlejandroLopez-Crespo, PabloMoreno, BelenAntunes, Fernando V.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-09-16T20:41:19Zoai:estudogeral.uc.pt:10316/101852Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:18:57.445763Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Multiaxial Fatigue Life Prediction on S355 Structural and Offshore Steel Using the SKS Critical Plane Model
title Multiaxial Fatigue Life Prediction on S355 Structural and Offshore Steel Using the SKS Critical Plane Model
spellingShingle Multiaxial Fatigue Life Prediction on S355 Structural and Offshore Steel Using the SKS Critical Plane Model
Cruces, Alejandro
critical plane model
multiaxial fatigue
non-proportional
S355-J2G3
title_short Multiaxial Fatigue Life Prediction on S355 Structural and Offshore Steel Using the SKS Critical Plane Model
title_full Multiaxial Fatigue Life Prediction on S355 Structural and Offshore Steel Using the SKS Critical Plane Model
title_fullStr Multiaxial Fatigue Life Prediction on S355 Structural and Offshore Steel Using the SKS Critical Plane Model
title_full_unstemmed Multiaxial Fatigue Life Prediction on S355 Structural and Offshore Steel Using the SKS Critical Plane Model
title_sort Multiaxial Fatigue Life Prediction on S355 Structural and Offshore Steel Using the SKS Critical Plane Model
author Cruces, Alejandro
author_facet Cruces, Alejandro
Lopez-Crespo, Pablo
Moreno, Belen
Antunes, Fernando V.
author_role author
author2 Lopez-Crespo, Pablo
Moreno, Belen
Antunes, Fernando V.
author2_role author
author
author
dc.contributor.author.fl_str_mv Cruces, Alejandro
Lopez-Crespo, Pablo
Moreno, Belen
Antunes, Fernando V.
dc.subject.por.fl_str_mv critical plane model
multiaxial fatigue
non-proportional
S355-J2G3
topic critical plane model
multiaxial fatigue
non-proportional
S355-J2G3
description This work analyses the prediction capabilities of a recently developed critical plane model, called the SKS method. The study uses multiaxial fatigue data for S355-J2G3 steel, with in-phase and 90 out-of-phase sinusoidal axial-torsional straining in both the low cycle fatigue and high cycle fatigue ranges. The SKS damage parameter includes the effect of hardening, mean shear stress and the interaction between shear and normal stress on the critical plane. The collapse and the prediction capabilities of the SKS critical plane damage parameter are compared to well-established critical plane models, namelyWang-Brown, Fatemi-Socie, Liu I and Liu II models. The differences between models are discussed in detail from the basis of the methodology and the life results. The collapse capacity of the SKS damage parameter presents the best results. The SKS model produced the second-best results for the different types of multiaxial loads studied.
publishDate 2018
dc.date.none.fl_str_mv 2018
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/101852
http://hdl.handle.net/10316/101852
https://doi.org/10.3390/met8121060
url http://hdl.handle.net/10316/101852
https://doi.org/10.3390/met8121060
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2075-4701
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134084008509440