A data mining approach for bank telemarketing using the rminer package and R tool
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/33424 |
Resumo: | Due to the global financial crisis, credit on international markets became more restricted for banks, turning attention to internal clients and their deposits to gather funds. This driver led to a demand for knowledge about client’s behavior towards deposits and especially their response to telemarketing campaigns. This work describes a data mining approach to extract valuable knowledge from recent Portuguese bank telemarketing campaign data. Such approach was guided by the CRISP- -DM methodology and the data analysis was conducted using the rminer package and R tool. Three classification models were tested (i.e., Decision Trees, Naïve Bayes and Support Vector Machines) and compared using two relevant criteria: ROC and Lift curve analysis. Overall, the Support Vector Machine obtained the best results and a sensitive analysis was applied to extract useful knowledge from this model, such as the best months for contacts and the influence of the last campaign result and having or not a mortgage credit on a successful deposit subscription. |
id |
RCAP_19589127fa67e8d0afe4108d691080dc |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/33424 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A data mining approach for bank telemarketing using the rminer package and R toolTelemarketingDirect marketingLong-term depositsData miningCRISP-DMClassification problemBankingRCiências Naturais::Ciências da Computação e da InformaçãoDue to the global financial crisis, credit on international markets became more restricted for banks, turning attention to internal clients and their deposits to gather funds. This driver led to a demand for knowledge about client’s behavior towards deposits and especially their response to telemarketing campaigns. This work describes a data mining approach to extract valuable knowledge from recent Portuguese bank telemarketing campaign data. Such approach was guided by the CRISP- -DM methodology and the data analysis was conducted using the rminer package and R tool. Three classification models were tested (i.e., Decision Trees, Naïve Bayes and Support Vector Machines) and compared using two relevant criteria: ROC and Lift curve analysis. Overall, the Support Vector Machine obtained the best results and a sensitive analysis was applied to extract useful knowledge from this model, such as the best months for contacts and the influence of the last campaign result and having or not a mortgage credit on a successful deposit subscription.Instituto Universitário de Lisboa (ISCTE-IUL)Universidade do MinhoMoro, SérgioCortez, PauloLaureano, Raul M. S.20132013-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/33424engIn Henrique Monteiro (Ed.), Working papers Series 2 13-06, ISCTE-IUL, Business Research Unit (BRU-IUL), 2013.http://ideas.repec.org/p/isc/iscwp2/bruwp1306.htmlinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T11:59:02Zoai:repositorium.sdum.uminho.pt:1822/33424Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:48:47.803044Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A data mining approach for bank telemarketing using the rminer package and R tool |
title |
A data mining approach for bank telemarketing using the rminer package and R tool |
spellingShingle |
A data mining approach for bank telemarketing using the rminer package and R tool Moro, Sérgio Telemarketing Direct marketing Long-term deposits Data mining CRISP-DM Classification problem Banking R Ciências Naturais::Ciências da Computação e da Informação |
title_short |
A data mining approach for bank telemarketing using the rminer package and R tool |
title_full |
A data mining approach for bank telemarketing using the rminer package and R tool |
title_fullStr |
A data mining approach for bank telemarketing using the rminer package and R tool |
title_full_unstemmed |
A data mining approach for bank telemarketing using the rminer package and R tool |
title_sort |
A data mining approach for bank telemarketing using the rminer package and R tool |
author |
Moro, Sérgio |
author_facet |
Moro, Sérgio Cortez, Paulo Laureano, Raul M. S. |
author_role |
author |
author2 |
Cortez, Paulo Laureano, Raul M. S. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Moro, Sérgio Cortez, Paulo Laureano, Raul M. S. |
dc.subject.por.fl_str_mv |
Telemarketing Direct marketing Long-term deposits Data mining CRISP-DM Classification problem Banking R Ciências Naturais::Ciências da Computação e da Informação |
topic |
Telemarketing Direct marketing Long-term deposits Data mining CRISP-DM Classification problem Banking R Ciências Naturais::Ciências da Computação e da Informação |
description |
Due to the global financial crisis, credit on international markets became more restricted for banks, turning attention to internal clients and their deposits to gather funds. This driver led to a demand for knowledge about client’s behavior towards deposits and especially their response to telemarketing campaigns. This work describes a data mining approach to extract valuable knowledge from recent Portuguese bank telemarketing campaign data. Such approach was guided by the CRISP- -DM methodology and the data analysis was conducted using the rminer package and R tool. Three classification models were tested (i.e., Decision Trees, Naïve Bayes and Support Vector Machines) and compared using two relevant criteria: ROC and Lift curve analysis. Overall, the Support Vector Machine obtained the best results and a sensitive analysis was applied to extract useful knowledge from this model, such as the best months for contacts and the influence of the last campaign result and having or not a mortgage credit on a successful deposit subscription. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013 2013-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/33424 |
url |
http://hdl.handle.net/1822/33424 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
In Henrique Monteiro (Ed.), Working papers Series 2 13-06, ISCTE-IUL, Business Research Unit (BRU-IUL), 2013. http://ideas.repec.org/p/isc/iscwp2/bruwp1306.html |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Instituto Universitário de Lisboa (ISCTE-IUL) |
publisher.none.fl_str_mv |
Instituto Universitário de Lisboa (ISCTE-IUL) |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132251069349888 |