A data mining approach for bank telemarketing using the rminer package and R tool

Detalhes bibliográficos
Autor(a) principal: Moro, Sérgio
Data de Publicação: 2013
Outros Autores: Cortez, Paulo, Laureano, Raul M. S.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/33424
Resumo: Due to the global financial crisis, credit on international markets became more restricted for banks, turning attention to internal clients and their deposits to gather funds. This driver led to a demand for knowledge about client’s behavior towards deposits and especially their response to telemarketing campaigns. This work describes a data mining approach to extract valuable knowledge from recent Portuguese bank telemarketing campaign data. Such approach was guided by the CRISP- -DM methodology and the data analysis was conducted using the rminer package and R tool. Three classification models were tested (i.e., Decision Trees, Naïve Bayes and Support Vector Machines) and compared using two relevant criteria: ROC and Lift curve analysis. Overall, the Support Vector Machine obtained the best results and a sensitive analysis was applied to extract useful knowledge from this model, such as the best months for contacts and the influence of the last campaign result and having or not a mortgage credit on a successful deposit subscription.
id RCAP_19589127fa67e8d0afe4108d691080dc
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/33424
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling A data mining approach for bank telemarketing using the rminer package and R toolTelemarketingDirect marketingLong-term depositsData miningCRISP-DMClassification problemBankingRCiências Naturais::Ciências da Computação e da InformaçãoDue to the global financial crisis, credit on international markets became more restricted for banks, turning attention to internal clients and their deposits to gather funds. This driver led to a demand for knowledge about client’s behavior towards deposits and especially their response to telemarketing campaigns. This work describes a data mining approach to extract valuable knowledge from recent Portuguese bank telemarketing campaign data. Such approach was guided by the CRISP- -DM methodology and the data analysis was conducted using the rminer package and R tool. Three classification models were tested (i.e., Decision Trees, Naïve Bayes and Support Vector Machines) and compared using two relevant criteria: ROC and Lift curve analysis. Overall, the Support Vector Machine obtained the best results and a sensitive analysis was applied to extract useful knowledge from this model, such as the best months for contacts and the influence of the last campaign result and having or not a mortgage credit on a successful deposit subscription.Instituto Universitário de Lisboa (ISCTE-IUL)Universidade do MinhoMoro, SérgioCortez, PauloLaureano, Raul M. S.20132013-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/33424engIn Henrique Monteiro (Ed.), Working papers Series 2 13-06, ISCTE-IUL, Business Research Unit (BRU-IUL), 2013.http://ideas.repec.org/p/isc/iscwp2/bruwp1306.htmlinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T11:59:02Zoai:repositorium.sdum.uminho.pt:1822/33424Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:48:47.803044Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv A data mining approach for bank telemarketing using the rminer package and R tool
title A data mining approach for bank telemarketing using the rminer package and R tool
spellingShingle A data mining approach for bank telemarketing using the rminer package and R tool
Moro, Sérgio
Telemarketing
Direct marketing
Long-term deposits
Data mining
CRISP-DM
Classification problem
Banking
R
Ciências Naturais::Ciências da Computação e da Informação
title_short A data mining approach for bank telemarketing using the rminer package and R tool
title_full A data mining approach for bank telemarketing using the rminer package and R tool
title_fullStr A data mining approach for bank telemarketing using the rminer package and R tool
title_full_unstemmed A data mining approach for bank telemarketing using the rminer package and R tool
title_sort A data mining approach for bank telemarketing using the rminer package and R tool
author Moro, Sérgio
author_facet Moro, Sérgio
Cortez, Paulo
Laureano, Raul M. S.
author_role author
author2 Cortez, Paulo
Laureano, Raul M. S.
author2_role author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Moro, Sérgio
Cortez, Paulo
Laureano, Raul M. S.
dc.subject.por.fl_str_mv Telemarketing
Direct marketing
Long-term deposits
Data mining
CRISP-DM
Classification problem
Banking
R
Ciências Naturais::Ciências da Computação e da Informação
topic Telemarketing
Direct marketing
Long-term deposits
Data mining
CRISP-DM
Classification problem
Banking
R
Ciências Naturais::Ciências da Computação e da Informação
description Due to the global financial crisis, credit on international markets became more restricted for banks, turning attention to internal clients and their deposits to gather funds. This driver led to a demand for knowledge about client’s behavior towards deposits and especially their response to telemarketing campaigns. This work describes a data mining approach to extract valuable knowledge from recent Portuguese bank telemarketing campaign data. Such approach was guided by the CRISP- -DM methodology and the data analysis was conducted using the rminer package and R tool. Three classification models were tested (i.e., Decision Trees, Naïve Bayes and Support Vector Machines) and compared using two relevant criteria: ROC and Lift curve analysis. Overall, the Support Vector Machine obtained the best results and a sensitive analysis was applied to extract useful knowledge from this model, such as the best months for contacts and the influence of the last campaign result and having or not a mortgage credit on a successful deposit subscription.
publishDate 2013
dc.date.none.fl_str_mv 2013
2013-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/33424
url http://hdl.handle.net/1822/33424
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv In Henrique Monteiro (Ed.), Working papers Series 2 13-06, ISCTE-IUL, Business Research Unit (BRU-IUL), 2013.
http://ideas.repec.org/p/isc/iscwp2/bruwp1306.html
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Instituto Universitário de Lisboa (ISCTE-IUL)
publisher.none.fl_str_mv Instituto Universitário de Lisboa (ISCTE-IUL)
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132251069349888