Advanced high temperature materials: Aeroengine fatigue
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://scielo.pt/scielo.php?script=sci_arttext&pid=S0870-83122008000100003 |
Resumo: | The aeroengine business is intensely competitive and commercial success relies on continuous improvements in engine efficiency, with reduced environmental impact and lower operating costs. Innovation through advanced materials is a powerful tool in the quest for market share. This paper discusses the recent advances in materials technologies for aeroengine components with particular reference to enhancing the fatigue life of turbine disc components. Computational modelling of materials processing is contributing strongly to the improved design of the microstructure and the delivery of enhanced high temperature fatigue properties. Future trends are towards new manufacturing approaches in which the microstructure/composition is varied within the component in response to the service temperature and stress distribution. Dual microstructure and dual alloy concepts are described. Implementation of these approaches requires detailed knowledge of microstructure/property relationships and process models to simulate the structure generated during the complex thermomechanical processing. |
id |
RCAP_19941f0189498e69988e085f1d30608f |
---|---|
oai_identifier_str |
oai:scielo:S0870-83122008000100003 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Advanced high temperature materials: Aeroengine fatigueNickel alloysFatigueCrack growthThermomechanical processingThe aeroengine business is intensely competitive and commercial success relies on continuous improvements in engine efficiency, with reduced environmental impact and lower operating costs. Innovation through advanced materials is a powerful tool in the quest for market share. This paper discusses the recent advances in materials technologies for aeroengine components with particular reference to enhancing the fatigue life of turbine disc components. Computational modelling of materials processing is contributing strongly to the improved design of the microstructure and the delivery of enhanced high temperature fatigue properties. Future trends are towards new manufacturing approaches in which the microstructure/composition is varied within the component in response to the service temperature and stress distribution. Dual microstructure and dual alloy concepts are described. Implementation of these approaches requires detailed knowledge of microstructure/property relationships and process models to simulate the structure generated during the complex thermomechanical processing.Sociedade Portuguesa de Materiais2008-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articletext/htmlhttp://scielo.pt/scielo.php?script=sci_arttext&pid=S0870-83122008000100003Ciência & Tecnologia dos Materiais v.20 n.1-2 2008reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAPenghttp://scielo.pt/scielo.php?script=sci_arttext&pid=S0870-83122008000100003Winstone,M. RBrooks,J. W.info:eu-repo/semantics/openAccess2024-02-06T17:01:04Zoai:scielo:S0870-83122008000100003Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:16:41.288673Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Advanced high temperature materials: Aeroengine fatigue |
title |
Advanced high temperature materials: Aeroengine fatigue |
spellingShingle |
Advanced high temperature materials: Aeroengine fatigue Winstone,M. R Nickel alloys Fatigue Crack growth Thermomechanical processing |
title_short |
Advanced high temperature materials: Aeroengine fatigue |
title_full |
Advanced high temperature materials: Aeroengine fatigue |
title_fullStr |
Advanced high temperature materials: Aeroengine fatigue |
title_full_unstemmed |
Advanced high temperature materials: Aeroengine fatigue |
title_sort |
Advanced high temperature materials: Aeroengine fatigue |
author |
Winstone,M. R |
author_facet |
Winstone,M. R Brooks,J. W. |
author_role |
author |
author2 |
Brooks,J. W. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Winstone,M. R Brooks,J. W. |
dc.subject.por.fl_str_mv |
Nickel alloys Fatigue Crack growth Thermomechanical processing |
topic |
Nickel alloys Fatigue Crack growth Thermomechanical processing |
description |
The aeroengine business is intensely competitive and commercial success relies on continuous improvements in engine efficiency, with reduced environmental impact and lower operating costs. Innovation through advanced materials is a powerful tool in the quest for market share. This paper discusses the recent advances in materials technologies for aeroengine components with particular reference to enhancing the fatigue life of turbine disc components. Computational modelling of materials processing is contributing strongly to the improved design of the microstructure and the delivery of enhanced high temperature fatigue properties. Future trends are towards new manufacturing approaches in which the microstructure/composition is varied within the component in response to the service temperature and stress distribution. Dual microstructure and dual alloy concepts are described. Implementation of these approaches requires detailed knowledge of microstructure/property relationships and process models to simulate the structure generated during the complex thermomechanical processing. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-01-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://scielo.pt/scielo.php?script=sci_arttext&pid=S0870-83122008000100003 |
url |
http://scielo.pt/scielo.php?script=sci_arttext&pid=S0870-83122008000100003 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
http://scielo.pt/scielo.php?script=sci_arttext&pid=S0870-83122008000100003 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Portuguesa de Materiais |
publisher.none.fl_str_mv |
Sociedade Portuguesa de Materiais |
dc.source.none.fl_str_mv |
Ciência & Tecnologia dos Materiais v.20 n.1-2 2008 reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137262830616576 |