Sentiment Analysis of Restaurant Reviews in Portuguese: A Transfer Learning and Ensemble Approach with Edge Computing

Detalhes bibliográficos
Autor(a) principal: Branco, Alexandre João Jardim
Data de Publicação: 2024
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.13/5602
Resumo: This research focuses on a case of applying transfer learning and transformer-based pre trained models to sentiment analysis in Portuguese in restaurant reviews. Specifically, we em ploy BERT and RoBERTa, two strong Language Models that fit into limited computational resources, like edge computing, to build a sentiment review classifier. The classifier’s perfor mance is evaluated using accuracy and AUC ROC as the primary metrics. Our results demon strate that the classifier developed using ensemble techniques outperforms the baseline model in accurately classifying restaurant reviews. This research contributes to sentiment analysis by exploring the effectiveness of transfer learning and transformer-based models in the context of Portuguese restaurant reviews. This work highlights the importance of considering the Portuguese language in sentiment analysis tasks. Furthermore, this study investigates the deployment of the model on edge com puting platforms, making sentiment analysis more accessible in resource-constrained environ ments. Combining deep learning techniques, transfer learning, and edge computing offers promising real-time sentiment analysis application opportunities. This research provides valu able insights for researchers and practitioners interested in sentiment analysis, natural language processing, and text analysis in the context of restaurant reviews.
id RCAP_1a083218d799772e95be2e981d495c55
oai_identifier_str oai:digituma.uma.pt:10400.13/5602
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Sentiment Analysis of Restaurant Reviews in Portuguese: A Transfer Learning and Ensemble Approach with Edge ComputingAnálise de sentimentoProcessamento linguagem naturalLíngua portuguesaComputação de bordaTransferência de conhecimentoTransformersSentiment analysisNatural language processingPortuguese languageEdge-computingTransfer-learningElectrical Engineering – Telecommunications.Faculdade de Ciências Exatas e da EngenhariaDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaThis research focuses on a case of applying transfer learning and transformer-based pre trained models to sentiment analysis in Portuguese in restaurant reviews. Specifically, we em ploy BERT and RoBERTa, two strong Language Models that fit into limited computational resources, like edge computing, to build a sentiment review classifier. The classifier’s perfor mance is evaluated using accuracy and AUC ROC as the primary metrics. Our results demon strate that the classifier developed using ensemble techniques outperforms the baseline model in accurately classifying restaurant reviews. This research contributes to sentiment analysis by exploring the effectiveness of transfer learning and transformer-based models in the context of Portuguese restaurant reviews. This work highlights the importance of considering the Portuguese language in sentiment analysis tasks. Furthermore, this study investigates the deployment of the model on edge com puting platforms, making sentiment analysis more accessible in resource-constrained environ ments. Combining deep learning techniques, transfer learning, and edge computing offers promising real-time sentiment analysis application opportunities. This research provides valu able insights for researchers and practitioners interested in sentiment analysis, natural language processing, and text analysis in the context of restaurant reviews.Este trabalho de investigação tem como foco melhorar a análise de sentimentos em ava liações de restaurantes, utilizando transfer learning e modelos pré-treinados baseados em trans formers. Especificamente, foram aplicados o BERT e o RoBERTa, dois modelos de última geração, para construir um classificador de avaliações de sentimentos. O desempenho do clas sificador é avaliado utilizando accuracy e AUC ROC como principais métricas. Os resultados demonstram que o classificador desenvolvido utilizando técnicas de ensemble supera o modelo de referência na classificação precisa das avaliações de restaurantes. Este trabalho contribui para a análise de sentimentos, explorando a eficácia do transfer learning e de modelos baseados em transformers no contexto das avaliações de restaurantes em Português. Este trabalho, destaca a importância de considerar a língua portuguesa em tarefas de aná lise de sentimentos. Além disso, este estudo investiga a implementação do modelo em platafor mas de edge computing, tornando a análise de sentimentos mais acessível em ambientes com recursos limitados. A combinação de técnicas de deep learning, transfer learning e edge com puting oferece oportunidades promissoras para aplicações de análise de sentimentos em tempo real. Este trabalho fornece indicações relevantes para investigadores e profissionais interessa dos em análise de sentimentos, processamento de linguagem natural e análise de texto no con texto de avaliações de restaurantes.Dias, Fernando Manuel Rosmaninho Morgado FerrãoMendonça, Fábio Ruben SilvaDigitUMaBranco, Alexandre João Jardim2024-03-12T14:51:29Z2024-02-052024-02-05T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.13/5602TID:203545214enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-17T05:58:48Zoai:digituma.uma.pt:10400.13/5602Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T04:01:54.732643Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Sentiment Analysis of Restaurant Reviews in Portuguese: A Transfer Learning and Ensemble Approach with Edge Computing
title Sentiment Analysis of Restaurant Reviews in Portuguese: A Transfer Learning and Ensemble Approach with Edge Computing
spellingShingle Sentiment Analysis of Restaurant Reviews in Portuguese: A Transfer Learning and Ensemble Approach with Edge Computing
Branco, Alexandre João Jardim
Análise de sentimento
Processamento linguagem natural
Língua portuguesa
Computação de borda
Transferência de conhecimento
Transformers
Sentiment analysis
Natural language processing
Portuguese language
Edge-computing
Transfer-learning
Electrical Engineering – Telecommunications
.
Faculdade de Ciências Exatas e da Engenharia
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
title_short Sentiment Analysis of Restaurant Reviews in Portuguese: A Transfer Learning and Ensemble Approach with Edge Computing
title_full Sentiment Analysis of Restaurant Reviews in Portuguese: A Transfer Learning and Ensemble Approach with Edge Computing
title_fullStr Sentiment Analysis of Restaurant Reviews in Portuguese: A Transfer Learning and Ensemble Approach with Edge Computing
title_full_unstemmed Sentiment Analysis of Restaurant Reviews in Portuguese: A Transfer Learning and Ensemble Approach with Edge Computing
title_sort Sentiment Analysis of Restaurant Reviews in Portuguese: A Transfer Learning and Ensemble Approach with Edge Computing
author Branco, Alexandre João Jardim
author_facet Branco, Alexandre João Jardim
author_role author
dc.contributor.none.fl_str_mv Dias, Fernando Manuel Rosmaninho Morgado Ferrão
Mendonça, Fábio Ruben Silva
DigitUMa
dc.contributor.author.fl_str_mv Branco, Alexandre João Jardim
dc.subject.por.fl_str_mv Análise de sentimento
Processamento linguagem natural
Língua portuguesa
Computação de borda
Transferência de conhecimento
Transformers
Sentiment analysis
Natural language processing
Portuguese language
Edge-computing
Transfer-learning
Electrical Engineering – Telecommunications
.
Faculdade de Ciências Exatas e da Engenharia
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
topic Análise de sentimento
Processamento linguagem natural
Língua portuguesa
Computação de borda
Transferência de conhecimento
Transformers
Sentiment analysis
Natural language processing
Portuguese language
Edge-computing
Transfer-learning
Electrical Engineering – Telecommunications
.
Faculdade de Ciências Exatas e da Engenharia
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
description This research focuses on a case of applying transfer learning and transformer-based pre trained models to sentiment analysis in Portuguese in restaurant reviews. Specifically, we em ploy BERT and RoBERTa, two strong Language Models that fit into limited computational resources, like edge computing, to build a sentiment review classifier. The classifier’s perfor mance is evaluated using accuracy and AUC ROC as the primary metrics. Our results demon strate that the classifier developed using ensemble techniques outperforms the baseline model in accurately classifying restaurant reviews. This research contributes to sentiment analysis by exploring the effectiveness of transfer learning and transformer-based models in the context of Portuguese restaurant reviews. This work highlights the importance of considering the Portuguese language in sentiment analysis tasks. Furthermore, this study investigates the deployment of the model on edge com puting platforms, making sentiment analysis more accessible in resource-constrained environ ments. Combining deep learning techniques, transfer learning, and edge computing offers promising real-time sentiment analysis application opportunities. This research provides valu able insights for researchers and practitioners interested in sentiment analysis, natural language processing, and text analysis in the context of restaurant reviews.
publishDate 2024
dc.date.none.fl_str_mv 2024-03-12T14:51:29Z
2024-02-05
2024-02-05T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.13/5602
TID:203545214
url http://hdl.handle.net/10400.13/5602
identifier_str_mv TID:203545214
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138191812329472