Sentiment Analysis of Restaurant Reviews in Portuguese: A Transfer Learning and Ensemble Approach with Edge Computing
Autor(a) principal: | |
---|---|
Data de Publicação: | 2024 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.13/5602 |
Resumo: | This research focuses on a case of applying transfer learning and transformer-based pre trained models to sentiment analysis in Portuguese in restaurant reviews. Specifically, we em ploy BERT and RoBERTa, two strong Language Models that fit into limited computational resources, like edge computing, to build a sentiment review classifier. The classifier’s perfor mance is evaluated using accuracy and AUC ROC as the primary metrics. Our results demon strate that the classifier developed using ensemble techniques outperforms the baseline model in accurately classifying restaurant reviews. This research contributes to sentiment analysis by exploring the effectiveness of transfer learning and transformer-based models in the context of Portuguese restaurant reviews. This work highlights the importance of considering the Portuguese language in sentiment analysis tasks. Furthermore, this study investigates the deployment of the model on edge com puting platforms, making sentiment analysis more accessible in resource-constrained environ ments. Combining deep learning techniques, transfer learning, and edge computing offers promising real-time sentiment analysis application opportunities. This research provides valu able insights for researchers and practitioners interested in sentiment analysis, natural language processing, and text analysis in the context of restaurant reviews. |
id |
RCAP_1a083218d799772e95be2e981d495c55 |
---|---|
oai_identifier_str |
oai:digituma.uma.pt:10400.13/5602 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Sentiment Analysis of Restaurant Reviews in Portuguese: A Transfer Learning and Ensemble Approach with Edge ComputingAnálise de sentimentoProcessamento linguagem naturalLíngua portuguesaComputação de bordaTransferência de conhecimentoTransformersSentiment analysisNatural language processingPortuguese languageEdge-computingTransfer-learningElectrical Engineering – Telecommunications.Faculdade de Ciências Exatas e da EngenhariaDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaThis research focuses on a case of applying transfer learning and transformer-based pre trained models to sentiment analysis in Portuguese in restaurant reviews. Specifically, we em ploy BERT and RoBERTa, two strong Language Models that fit into limited computational resources, like edge computing, to build a sentiment review classifier. The classifier’s perfor mance is evaluated using accuracy and AUC ROC as the primary metrics. Our results demon strate that the classifier developed using ensemble techniques outperforms the baseline model in accurately classifying restaurant reviews. This research contributes to sentiment analysis by exploring the effectiveness of transfer learning and transformer-based models in the context of Portuguese restaurant reviews. This work highlights the importance of considering the Portuguese language in sentiment analysis tasks. Furthermore, this study investigates the deployment of the model on edge com puting platforms, making sentiment analysis more accessible in resource-constrained environ ments. Combining deep learning techniques, transfer learning, and edge computing offers promising real-time sentiment analysis application opportunities. This research provides valu able insights for researchers and practitioners interested in sentiment analysis, natural language processing, and text analysis in the context of restaurant reviews.Este trabalho de investigação tem como foco melhorar a análise de sentimentos em ava liações de restaurantes, utilizando transfer learning e modelos pré-treinados baseados em trans formers. Especificamente, foram aplicados o BERT e o RoBERTa, dois modelos de última geração, para construir um classificador de avaliações de sentimentos. O desempenho do clas sificador é avaliado utilizando accuracy e AUC ROC como principais métricas. Os resultados demonstram que o classificador desenvolvido utilizando técnicas de ensemble supera o modelo de referência na classificação precisa das avaliações de restaurantes. Este trabalho contribui para a análise de sentimentos, explorando a eficácia do transfer learning e de modelos baseados em transformers no contexto das avaliações de restaurantes em Português. Este trabalho, destaca a importância de considerar a língua portuguesa em tarefas de aná lise de sentimentos. Além disso, este estudo investiga a implementação do modelo em platafor mas de edge computing, tornando a análise de sentimentos mais acessível em ambientes com recursos limitados. A combinação de técnicas de deep learning, transfer learning e edge com puting oferece oportunidades promissoras para aplicações de análise de sentimentos em tempo real. Este trabalho fornece indicações relevantes para investigadores e profissionais interessa dos em análise de sentimentos, processamento de linguagem natural e análise de texto no con texto de avaliações de restaurantes.Dias, Fernando Manuel Rosmaninho Morgado FerrãoMendonça, Fábio Ruben SilvaDigitUMaBranco, Alexandre João Jardim2024-03-12T14:51:29Z2024-02-052024-02-05T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.13/5602TID:203545214enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-17T05:58:48Zoai:digituma.uma.pt:10400.13/5602Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T04:01:54.732643Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Sentiment Analysis of Restaurant Reviews in Portuguese: A Transfer Learning and Ensemble Approach with Edge Computing |
title |
Sentiment Analysis of Restaurant Reviews in Portuguese: A Transfer Learning and Ensemble Approach with Edge Computing |
spellingShingle |
Sentiment Analysis of Restaurant Reviews in Portuguese: A Transfer Learning and Ensemble Approach with Edge Computing Branco, Alexandre João Jardim Análise de sentimento Processamento linguagem natural Língua portuguesa Computação de borda Transferência de conhecimento Transformers Sentiment analysis Natural language processing Portuguese language Edge-computing Transfer-learning Electrical Engineering – Telecommunications . Faculdade de Ciências Exatas e da Engenharia Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
title_short |
Sentiment Analysis of Restaurant Reviews in Portuguese: A Transfer Learning and Ensemble Approach with Edge Computing |
title_full |
Sentiment Analysis of Restaurant Reviews in Portuguese: A Transfer Learning and Ensemble Approach with Edge Computing |
title_fullStr |
Sentiment Analysis of Restaurant Reviews in Portuguese: A Transfer Learning and Ensemble Approach with Edge Computing |
title_full_unstemmed |
Sentiment Analysis of Restaurant Reviews in Portuguese: A Transfer Learning and Ensemble Approach with Edge Computing |
title_sort |
Sentiment Analysis of Restaurant Reviews in Portuguese: A Transfer Learning and Ensemble Approach with Edge Computing |
author |
Branco, Alexandre João Jardim |
author_facet |
Branco, Alexandre João Jardim |
author_role |
author |
dc.contributor.none.fl_str_mv |
Dias, Fernando Manuel Rosmaninho Morgado Ferrão Mendonça, Fábio Ruben Silva DigitUMa |
dc.contributor.author.fl_str_mv |
Branco, Alexandre João Jardim |
dc.subject.por.fl_str_mv |
Análise de sentimento Processamento linguagem natural Língua portuguesa Computação de borda Transferência de conhecimento Transformers Sentiment analysis Natural language processing Portuguese language Edge-computing Transfer-learning Electrical Engineering – Telecommunications . Faculdade de Ciências Exatas e da Engenharia Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
topic |
Análise de sentimento Processamento linguagem natural Língua portuguesa Computação de borda Transferência de conhecimento Transformers Sentiment analysis Natural language processing Portuguese language Edge-computing Transfer-learning Electrical Engineering – Telecommunications . Faculdade de Ciências Exatas e da Engenharia Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
description |
This research focuses on a case of applying transfer learning and transformer-based pre trained models to sentiment analysis in Portuguese in restaurant reviews. Specifically, we em ploy BERT and RoBERTa, two strong Language Models that fit into limited computational resources, like edge computing, to build a sentiment review classifier. The classifier’s perfor mance is evaluated using accuracy and AUC ROC as the primary metrics. Our results demon strate that the classifier developed using ensemble techniques outperforms the baseline model in accurately classifying restaurant reviews. This research contributes to sentiment analysis by exploring the effectiveness of transfer learning and transformer-based models in the context of Portuguese restaurant reviews. This work highlights the importance of considering the Portuguese language in sentiment analysis tasks. Furthermore, this study investigates the deployment of the model on edge com puting platforms, making sentiment analysis more accessible in resource-constrained environ ments. Combining deep learning techniques, transfer learning, and edge computing offers promising real-time sentiment analysis application opportunities. This research provides valu able insights for researchers and practitioners interested in sentiment analysis, natural language processing, and text analysis in the context of restaurant reviews. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-03-12T14:51:29Z 2024-02-05 2024-02-05T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.13/5602 TID:203545214 |
url |
http://hdl.handle.net/10400.13/5602 |
identifier_str_mv |
TID:203545214 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138191812329472 |