A micro-mechanical model for the homogenisation of masonry

Detalhes bibliográficos
Autor(a) principal: Zucchini, A.
Data de Publicação: 2002
Outros Autores: Lourenço, Paulo B.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/66503
Resumo: Masonry is a composite material made of units (brick, blocks, etc.) and mortar. For periodic arrangements of the units, the homogenisation techniques represent a powerful tool for structural analysis. The main problem pending is the errors introduced in the homogenisation process when large difference in stiffness are expected for the two components. This issue is obvious in the case of non-linear analysis, where the tangent stiffness of one component or the tangent stiffness of the two components tends to zero with increasing inelastic behaviour.The paper itself does not concentrate on the issue of non-linear homogenisation. But as the accuracy of the model is assessed for an increasing ratio between the stiffness of the two components, the benefits of adopting the proposed method for non-linear analysis are demonstrated. Therefore, the proposed model represents a major step in the application of homogenisation techniques for masonry structures.The micro-mechanical model presented has been derived from the actual deformations of the basic cell and includes additional internal deformation modes, with regard to the standard two-step homogenisation procedure. These mechanisms, which result from the staggered alignment of the units in the composite, are of capital importance for the global response. For the proposed model, it is shown that, up to a stiffness ratio of one thousand, the maximum error in the calculation of the homogenised Young's moduli is lower than five percent. It is also shown that the anisotropic failure surface obtained from the homogenised model seems to represent well experimental results available in the literature.
id RCAP_1a9866e08f2fb1dc0bdf403253659b22
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/66503
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling A micro-mechanical model for the homogenisation of masonrycompositesnumerical techniqueshomogenisation techniquesmasonryEngenharia e Tecnologia::Engenharia CivilScience & TechnologyMasonry is a composite material made of units (brick, blocks, etc.) and mortar. For periodic arrangements of the units, the homogenisation techniques represent a powerful tool for structural analysis. The main problem pending is the errors introduced in the homogenisation process when large difference in stiffness are expected for the two components. This issue is obvious in the case of non-linear analysis, where the tangent stiffness of one component or the tangent stiffness of the two components tends to zero with increasing inelastic behaviour.The paper itself does not concentrate on the issue of non-linear homogenisation. But as the accuracy of the model is assessed for an increasing ratio between the stiffness of the two components, the benefits of adopting the proposed method for non-linear analysis are demonstrated. Therefore, the proposed model represents a major step in the application of homogenisation techniques for masonry structures.The micro-mechanical model presented has been derived from the actual deformations of the basic cell and includes additional internal deformation modes, with regard to the standard two-step homogenisation procedure. These mechanisms, which result from the staggered alignment of the units in the composite, are of capital importance for the global response. For the proposed model, it is shown that, up to a stiffness ratio of one thousand, the maximum error in the calculation of the homogenised Young's moduli is lower than five percent. It is also shown that the anisotropic failure surface obtained from the homogenised model seems to represent well experimental results available in the literature.FCT - Erzincan Üniversitesi(PRAXIS-C-ECM-13247-1998)Pergamon-Elsevier Science LtdUniversidade do MinhoZucchini, A.Lourenço, Paulo B.20022002-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/66503eng0020-768310.1016/S0020-7683(02)00230-5info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:36:08Zoai:repositorium.sdum.uminho.pt:1822/66503Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:32:08.604730Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv A micro-mechanical model for the homogenisation of masonry
title A micro-mechanical model for the homogenisation of masonry
spellingShingle A micro-mechanical model for the homogenisation of masonry
Zucchini, A.
composites
numerical techniques
homogenisation techniques
masonry
Engenharia e Tecnologia::Engenharia Civil
Science & Technology
title_short A micro-mechanical model for the homogenisation of masonry
title_full A micro-mechanical model for the homogenisation of masonry
title_fullStr A micro-mechanical model for the homogenisation of masonry
title_full_unstemmed A micro-mechanical model for the homogenisation of masonry
title_sort A micro-mechanical model for the homogenisation of masonry
author Zucchini, A.
author_facet Zucchini, A.
Lourenço, Paulo B.
author_role author
author2 Lourenço, Paulo B.
author2_role author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Zucchini, A.
Lourenço, Paulo B.
dc.subject.por.fl_str_mv composites
numerical techniques
homogenisation techniques
masonry
Engenharia e Tecnologia::Engenharia Civil
Science & Technology
topic composites
numerical techniques
homogenisation techniques
masonry
Engenharia e Tecnologia::Engenharia Civil
Science & Technology
description Masonry is a composite material made of units (brick, blocks, etc.) and mortar. For periodic arrangements of the units, the homogenisation techniques represent a powerful tool for structural analysis. The main problem pending is the errors introduced in the homogenisation process when large difference in stiffness are expected for the two components. This issue is obvious in the case of non-linear analysis, where the tangent stiffness of one component or the tangent stiffness of the two components tends to zero with increasing inelastic behaviour.The paper itself does not concentrate on the issue of non-linear homogenisation. But as the accuracy of the model is assessed for an increasing ratio between the stiffness of the two components, the benefits of adopting the proposed method for non-linear analysis are demonstrated. Therefore, the proposed model represents a major step in the application of homogenisation techniques for masonry structures.The micro-mechanical model presented has been derived from the actual deformations of the basic cell and includes additional internal deformation modes, with regard to the standard two-step homogenisation procedure. These mechanisms, which result from the staggered alignment of the units in the composite, are of capital importance for the global response. For the proposed model, it is shown that, up to a stiffness ratio of one thousand, the maximum error in the calculation of the homogenised Young's moduli is lower than five percent. It is also shown that the anisotropic failure surface obtained from the homogenised model seems to represent well experimental results available in the literature.
publishDate 2002
dc.date.none.fl_str_mv 2002
2002-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/66503
url http://hdl.handle.net/1822/66503
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0020-7683
10.1016/S0020-7683(02)00230-5
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132832574996480