Fatty liver automatic diagnosis from ultrasound images
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.21/4899 |
Resumo: | In this paper an automatic classification algorithm is proposed for the diagnosis of the liver steatosis, also known as, fatty liver, from ultrasound images. The features, automatically extracted from the ultrasound images used by the classifier, are basically the ones used by the physicians in the diagnosis of the disease based on visual inspection of the ultrasound images. The main novelty of the method is the utilization of the speckle noise that corrupts the ultrasound images to compute textural features of the liver parenchyma relevant for the diagnosis. The algorithm uses the Bayesian framework to compute a noiseless image, containing anatomic and echogenic information of the liver and a second image containing only the speckle noise used to compute the textural features. The classification results, with the Bayes classifier using manually classified data as ground truth show that the automatic classifier reaches an accuracy of 95% and a 100% of sensitivity. |
id |
RCAP_1ab8f150efd436305f1535ca204b7525 |
---|---|
oai_identifier_str |
oai:repositorio.ipl.pt:10400.21/4899 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Fatty liver automatic diagnosis from ultrasound imagesRadiologyUltrasound imageLiver steatosisClinical diagnosisIn this paper an automatic classification algorithm is proposed for the diagnosis of the liver steatosis, also known as, fatty liver, from ultrasound images. The features, automatically extracted from the ultrasound images used by the classifier, are basically the ones used by the physicians in the diagnosis of the disease based on visual inspection of the ultrasound images. The main novelty of the method is the utilization of the speckle noise that corrupts the ultrasound images to compute textural features of the liver parenchyma relevant for the diagnosis. The algorithm uses the Bayesian framework to compute a noiseless image, containing anatomic and echogenic information of the liver and a second image containing only the speckle noise used to compute the textural features. The classification results, with the Bayes classifier using manually classified data as ground truth show that the automatic classifier reaches an accuracy of 95% and a 100% of sensitivity.RCIPLRibeiro, RicardoSeabra, JoséSanches, João2015-08-20T15:55:47Z20082008-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.21/4899engRibeiro R, Seabra J, Sanches J. Fatty liver automatic diagnosis from ultrasound images. In Proceedings of RecPad 2008 - 14th Portuguese Conference on Pattern Recognition, Coimbra, October 31, 2008.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-08-03T09:47:33Zoai:repositorio.ipl.pt:10400.21/4899Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:14:15.870370Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Fatty liver automatic diagnosis from ultrasound images |
title |
Fatty liver automatic diagnosis from ultrasound images |
spellingShingle |
Fatty liver automatic diagnosis from ultrasound images Ribeiro, Ricardo Radiology Ultrasound image Liver steatosis Clinical diagnosis |
title_short |
Fatty liver automatic diagnosis from ultrasound images |
title_full |
Fatty liver automatic diagnosis from ultrasound images |
title_fullStr |
Fatty liver automatic diagnosis from ultrasound images |
title_full_unstemmed |
Fatty liver automatic diagnosis from ultrasound images |
title_sort |
Fatty liver automatic diagnosis from ultrasound images |
author |
Ribeiro, Ricardo |
author_facet |
Ribeiro, Ricardo Seabra, José Sanches, João |
author_role |
author |
author2 |
Seabra, José Sanches, João |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
RCIPL |
dc.contributor.author.fl_str_mv |
Ribeiro, Ricardo Seabra, José Sanches, João |
dc.subject.por.fl_str_mv |
Radiology Ultrasound image Liver steatosis Clinical diagnosis |
topic |
Radiology Ultrasound image Liver steatosis Clinical diagnosis |
description |
In this paper an automatic classification algorithm is proposed for the diagnosis of the liver steatosis, also known as, fatty liver, from ultrasound images. The features, automatically extracted from the ultrasound images used by the classifier, are basically the ones used by the physicians in the diagnosis of the disease based on visual inspection of the ultrasound images. The main novelty of the method is the utilization of the speckle noise that corrupts the ultrasound images to compute textural features of the liver parenchyma relevant for the diagnosis. The algorithm uses the Bayesian framework to compute a noiseless image, containing anatomic and echogenic information of the liver and a second image containing only the speckle noise used to compute the textural features. The classification results, with the Bayes classifier using manually classified data as ground truth show that the automatic classifier reaches an accuracy of 95% and a 100% of sensitivity. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008 2008-01-01T00:00:00Z 2015-08-20T15:55:47Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.21/4899 |
url |
http://hdl.handle.net/10400.21/4899 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Ribeiro R, Seabra J, Sanches J. Fatty liver automatic diagnosis from ultrasound images. In Proceedings of RecPad 2008 - 14th Portuguese Conference on Pattern Recognition, Coimbra, October 31, 2008. |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133400461737984 |