Fatty liver automatic diagnosis from ultrasound images

Detalhes bibliográficos
Autor(a) principal: Ribeiro, Ricardo
Data de Publicação: 2008
Outros Autores: Seabra, José, Sanches, João
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.21/4899
Resumo: In this paper an automatic classification algorithm is proposed for the diagnosis of the liver steatosis, also known as, fatty liver, from ultrasound images. The features, automatically extracted from the ultrasound images used by the classifier, are basically the ones used by the physicians in the diagnosis of the disease based on visual inspection of the ultrasound images. The main novelty of the method is the utilization of the speckle noise that corrupts the ultrasound images to compute textural features of the liver parenchyma relevant for the diagnosis. The algorithm uses the Bayesian framework to compute a noiseless image, containing anatomic and echogenic information of the liver and a second image containing only the speckle noise used to compute the textural features. The classification results, with the Bayes classifier using manually classified data as ground truth show that the automatic classifier reaches an accuracy of 95% and a 100% of sensitivity.
id RCAP_1ab8f150efd436305f1535ca204b7525
oai_identifier_str oai:repositorio.ipl.pt:10400.21/4899
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Fatty liver automatic diagnosis from ultrasound imagesRadiologyUltrasound imageLiver steatosisClinical diagnosisIn this paper an automatic classification algorithm is proposed for the diagnosis of the liver steatosis, also known as, fatty liver, from ultrasound images. The features, automatically extracted from the ultrasound images used by the classifier, are basically the ones used by the physicians in the diagnosis of the disease based on visual inspection of the ultrasound images. The main novelty of the method is the utilization of the speckle noise that corrupts the ultrasound images to compute textural features of the liver parenchyma relevant for the diagnosis. The algorithm uses the Bayesian framework to compute a noiseless image, containing anatomic and echogenic information of the liver and a second image containing only the speckle noise used to compute the textural features. The classification results, with the Bayes classifier using manually classified data as ground truth show that the automatic classifier reaches an accuracy of 95% and a 100% of sensitivity.RCIPLRibeiro, RicardoSeabra, JoséSanches, João2015-08-20T15:55:47Z20082008-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.21/4899engRibeiro R, Seabra J, Sanches J. Fatty liver automatic diagnosis from ultrasound images. In Proceedings of RecPad 2008 - 14th Portuguese Conference on Pattern Recognition, Coimbra, October 31, 2008.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-08-03T09:47:33Zoai:repositorio.ipl.pt:10400.21/4899Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:14:15.870370Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Fatty liver automatic diagnosis from ultrasound images
title Fatty liver automatic diagnosis from ultrasound images
spellingShingle Fatty liver automatic diagnosis from ultrasound images
Ribeiro, Ricardo
Radiology
Ultrasound image
Liver steatosis
Clinical diagnosis
title_short Fatty liver automatic diagnosis from ultrasound images
title_full Fatty liver automatic diagnosis from ultrasound images
title_fullStr Fatty liver automatic diagnosis from ultrasound images
title_full_unstemmed Fatty liver automatic diagnosis from ultrasound images
title_sort Fatty liver automatic diagnosis from ultrasound images
author Ribeiro, Ricardo
author_facet Ribeiro, Ricardo
Seabra, José
Sanches, João
author_role author
author2 Seabra, José
Sanches, João
author2_role author
author
dc.contributor.none.fl_str_mv RCIPL
dc.contributor.author.fl_str_mv Ribeiro, Ricardo
Seabra, José
Sanches, João
dc.subject.por.fl_str_mv Radiology
Ultrasound image
Liver steatosis
Clinical diagnosis
topic Radiology
Ultrasound image
Liver steatosis
Clinical diagnosis
description In this paper an automatic classification algorithm is proposed for the diagnosis of the liver steatosis, also known as, fatty liver, from ultrasound images. The features, automatically extracted from the ultrasound images used by the classifier, are basically the ones used by the physicians in the diagnosis of the disease based on visual inspection of the ultrasound images. The main novelty of the method is the utilization of the speckle noise that corrupts the ultrasound images to compute textural features of the liver parenchyma relevant for the diagnosis. The algorithm uses the Bayesian framework to compute a noiseless image, containing anatomic and echogenic information of the liver and a second image containing only the speckle noise used to compute the textural features. The classification results, with the Bayes classifier using manually classified data as ground truth show that the automatic classifier reaches an accuracy of 95% and a 100% of sensitivity.
publishDate 2008
dc.date.none.fl_str_mv 2008
2008-01-01T00:00:00Z
2015-08-20T15:55:47Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.21/4899
url http://hdl.handle.net/10400.21/4899
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Ribeiro R, Seabra J, Sanches J. Fatty liver automatic diagnosis from ultrasound images. In Proceedings of RecPad 2008 - 14th Portuguese Conference on Pattern Recognition, Coimbra, October 31, 2008.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133400461737984