Harnessing ultraconfined graphene plasmons to probe the electrodynamics of superconductors

Detalhes bibliográficos
Autor(a) principal: Costa, A. T.
Data de Publicação: 2021
Outros Autores: Goncalves, P. A. D., Basov, D. N., Koppens, Frank H. L., Mortensen, N. Asger, Peres, N. M. R.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/1822/74789
Resumo: We show that the Higgs mode of a superconductor, which is usually challenging to observe by far-field optics, can be made clearly visible using near-field optics by harnessing ultraconfined graphene plasmons. As near-field sources we investigate two examples: graphene plasmons and quantum emitters. In both cases the coupling to the Higgs mode is clearly visible. In the case of the graphene plasmons, the coupling is signaled by a clear anticrossing stemming from the interaction of graphene plasmons with the Higgs mode of the superconductor. In the case of the quantum emitters, the Higgs mode is observable through the Purcell effect. When combining the superconductor, graphene, and the quantum emitters, a number of experimental knobs become available for unveiling and studying the electrodynamics of superconductors.
id RCAP_1ae97294461d97f909731171d8d1f2c9
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/74789
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Harnessing ultraconfined graphene plasmons to probe the electrodynamics of superconductorsPlasmonsPolaritonsGrapheneSuperconductivityNear-field microscopyScience & TechnologyWe show that the Higgs mode of a superconductor, which is usually challenging to observe by far-field optics, can be made clearly visible using near-field optics by harnessing ultraconfined graphene plasmons. As near-field sources we investigate two examples: graphene plasmons and quantum emitters. In both cases the coupling to the Higgs mode is clearly visible. In the case of the graphene plasmons, the coupling is signaled by a clear anticrossing stemming from the interaction of graphene plasmons with the Higgs mode of the superconductor. In the case of the quantum emitters, the Higgs mode is observable through the Purcell effect. When combining the superconductor, graphene, and the quantum emitters, a number of experimental knobs become available for unveiling and studying the electrodynamics of superconductors.- N.M.R.P. acknowledges support from the European Commission through the project "Graphene-Driven Revolutions in Information and Communication Technology (ICT) and Beyond" (881603-Core 3) and the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Financing UID/FIS/04650/2019. N.M.R.P. also acknowledges COMPETE2020, PORTUGAL2020, Fundo Europeu de Desenvolvimento Regional (FEDER), and the Portuguese FCT through Project POCI-01-0145-FEDER-028114. N.A.M. is a VILLUM Investigator supported by VILLUM FONDEN (Grant 16498) and Independent Research Fund Denmark (Grant 7026-00117B). The Center for Nano Optics is financially supported by the University of Southern Denmark (SDU) (SDU 2020 funding). The Center for Nanostructured Graphene is sponsored by the Danish National Research Foundation (Project DNRF103). Work on hybrid heterostructures at Columbia was supported entirely by the Center on Precision-Assembled Quantum Materials, funded through the US National Science Foundation Materials Research Science and Engineering Centers (Award DMR-2011738). D.N.B. is Moore Investigator in Quantum Materials, Emergent Phenomena in Quantum Systems (EPiQS) 9455. D.N.B. is the Vannevar Bush Faculty Fellow ONR-VB: N00014-19-1-2630. F.H.L.K. acknowledges financial support from the Government of Catalonia trough the SGR grant and from the Span-ish Ministry of Economy and Competitiveness (MINECO) through the Severo Ochoa Program for Centers of Excellence in Research & Development (SEV2015-0522); support by Fundacio ' Cellex Barcelona, Generalitat de Catalunya through the Centres de Recerca de Catalunya (CERCA) program; and the MINECO grants Plan Nacional (FIS2016-81044-P) and the Agency for Management of University and Research Grants 2017 SGR 1656. Furthermore, the research leading to these results has received funding from the European Union's Horizon 2020 program under the Graphene Flagship Grants 785219 (Core 2) and 881603 (Core 3) and the Quantum Flagship Grant 820378. This work was also supported byNational Academy of SciencesUniversidade do MinhoCosta, A. T.Goncalves, P. A. D.Basov, D. N.Koppens, Frank H. L.Mortensen, N. AsgerPeres, N. M. R.2021-01-262021-01-26T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/74789eng0027-84241091-649010.1073/pnas.201284711833479179https://www.pnas.org/content/118/4/e2012847118/tab-article-infoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:27:31Zoai:repositorium.sdum.uminho.pt:1822/74789Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:22:07.969994Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Harnessing ultraconfined graphene plasmons to probe the electrodynamics of superconductors
title Harnessing ultraconfined graphene plasmons to probe the electrodynamics of superconductors
spellingShingle Harnessing ultraconfined graphene plasmons to probe the electrodynamics of superconductors
Costa, A. T.
Plasmons
Polaritons
Graphene
Superconductivity
Near-field microscopy
Science & Technology
title_short Harnessing ultraconfined graphene plasmons to probe the electrodynamics of superconductors
title_full Harnessing ultraconfined graphene plasmons to probe the electrodynamics of superconductors
title_fullStr Harnessing ultraconfined graphene plasmons to probe the electrodynamics of superconductors
title_full_unstemmed Harnessing ultraconfined graphene plasmons to probe the electrodynamics of superconductors
title_sort Harnessing ultraconfined graphene plasmons to probe the electrodynamics of superconductors
author Costa, A. T.
author_facet Costa, A. T.
Goncalves, P. A. D.
Basov, D. N.
Koppens, Frank H. L.
Mortensen, N. Asger
Peres, N. M. R.
author_role author
author2 Goncalves, P. A. D.
Basov, D. N.
Koppens, Frank H. L.
Mortensen, N. Asger
Peres, N. M. R.
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Costa, A. T.
Goncalves, P. A. D.
Basov, D. N.
Koppens, Frank H. L.
Mortensen, N. Asger
Peres, N. M. R.
dc.subject.por.fl_str_mv Plasmons
Polaritons
Graphene
Superconductivity
Near-field microscopy
Science & Technology
topic Plasmons
Polaritons
Graphene
Superconductivity
Near-field microscopy
Science & Technology
description We show that the Higgs mode of a superconductor, which is usually challenging to observe by far-field optics, can be made clearly visible using near-field optics by harnessing ultraconfined graphene plasmons. As near-field sources we investigate two examples: graphene plasmons and quantum emitters. In both cases the coupling to the Higgs mode is clearly visible. In the case of the graphene plasmons, the coupling is signaled by a clear anticrossing stemming from the interaction of graphene plasmons with the Higgs mode of the superconductor. In the case of the quantum emitters, the Higgs mode is observable through the Purcell effect. When combining the superconductor, graphene, and the quantum emitters, a number of experimental knobs become available for unveiling and studying the electrodynamics of superconductors.
publishDate 2021
dc.date.none.fl_str_mv 2021-01-26
2021-01-26T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1822/74789
url https://hdl.handle.net/1822/74789
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0027-8424
1091-6490
10.1073/pnas.2012847118
33479179
https://www.pnas.org/content/118/4/e2012847118/tab-article-info
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv National Academy of Sciences
publisher.none.fl_str_mv National Academy of Sciences
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132691077005312