Analysis of eyewitness testimony using electroencephalogram signals

Detalhes bibliográficos
Autor(a) principal: Mendes, Bruno Miguel Vilela
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/31348
Resumo: The application of Brain Computer Interfaces techniques to vital crime witnesses could and probably will be a key feature in the justice system. Features from the electroencephalogram signals were extracted with information detailing their domain (time or frequency), and their spacial scalp and time placement. For both domains, two different classification pipelines were applied in order to select the most relevant features: one to rank and select the top features and another to recursively eliminate the least relevant feature. The Support Vector Machine (linear and non-linear) is the classification model included in the pipeline. Further observations on the selected features by the applied techniques were performed and discussed in relation to the available knowledge about face recognition. The present work provides an experimental study on the electroencephalogram signals acquired from an experiment in which an array of subjects were asked to identify both culprit and distractor being the culprit related to a previously shown crime scene video.
id RCAP_1aec0e30bb98fc8e146fd02a0407bba8
oai_identifier_str oai:ria.ua.pt:10773/31348
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Analysis of eyewitness testimony using electroencephalogram signalsEyewitnessFace recognitionBCIEEGFeature extractionSupervised machine learningSVMSVM-RFEANOVAThe application of Brain Computer Interfaces techniques to vital crime witnesses could and probably will be a key feature in the justice system. Features from the electroencephalogram signals were extracted with information detailing their domain (time or frequency), and their spacial scalp and time placement. For both domains, two different classification pipelines were applied in order to select the most relevant features: one to rank and select the top features and another to recursively eliminate the least relevant feature. The Support Vector Machine (linear and non-linear) is the classification model included in the pipeline. Further observations on the selected features by the applied techniques were performed and discussed in relation to the available knowledge about face recognition. The present work provides an experimental study on the electroencephalogram signals acquired from an experiment in which an array of subjects were asked to identify both culprit and distractor being the culprit related to a previously shown crime scene video.A aplicação de técnicas de Interfaces Cérebro-Computador a testemunhas vitais de um crime pode e provavelmente será uma funcionalidade chave no sistema de justiça. Características de sinais provenientes de eletroencefalograma foram extraídas com informações sobre o seu domínio (tempo ou frequência), e a sua localização espacial e temporal. Para ambos os domínios, dois modelos de classificação diferentes foram aplicados com vista a selecionar as características mais relevantes: um para classificar, ordenar e selecionar as características mais importantes e outro para eliminar recursivamente a característica menos relevante. O modelo utilizado para classificação foi o Support Vector Machine (linear e não linear). Outras observações sobre as características selecionadas pelas técnicas aplicadas foram realizadas e discutidas tendo em conta o conhecimento disponível sobre reconhecimento facial. O presente trabalho fornece um estudo experimental sobre os sinais de eletroencefalograma adquiridos numa experiência na qual foi pedido a um grupo de indivíduos para identificar tanto culpado como distrator, sendo que o culpado estava relacionado a um vídeo de cenário de crime mostrado anteriormente.2021-05-10T10:51:56Z2021-02-22T00:00:00Z2021-02-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/31348engMendes, Bruno Miguel Vilelainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:00:31Zoai:ria.ua.pt:10773/31348Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:03:15.389375Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Analysis of eyewitness testimony using electroencephalogram signals
title Analysis of eyewitness testimony using electroencephalogram signals
spellingShingle Analysis of eyewitness testimony using electroencephalogram signals
Mendes, Bruno Miguel Vilela
Eyewitness
Face recognition
BCI
EEG
Feature extraction
Supervised machine learning
SVM
SVM-RFE
ANOVA
title_short Analysis of eyewitness testimony using electroencephalogram signals
title_full Analysis of eyewitness testimony using electroencephalogram signals
title_fullStr Analysis of eyewitness testimony using electroencephalogram signals
title_full_unstemmed Analysis of eyewitness testimony using electroencephalogram signals
title_sort Analysis of eyewitness testimony using electroencephalogram signals
author Mendes, Bruno Miguel Vilela
author_facet Mendes, Bruno Miguel Vilela
author_role author
dc.contributor.author.fl_str_mv Mendes, Bruno Miguel Vilela
dc.subject.por.fl_str_mv Eyewitness
Face recognition
BCI
EEG
Feature extraction
Supervised machine learning
SVM
SVM-RFE
ANOVA
topic Eyewitness
Face recognition
BCI
EEG
Feature extraction
Supervised machine learning
SVM
SVM-RFE
ANOVA
description The application of Brain Computer Interfaces techniques to vital crime witnesses could and probably will be a key feature in the justice system. Features from the electroencephalogram signals were extracted with information detailing their domain (time or frequency), and their spacial scalp and time placement. For both domains, two different classification pipelines were applied in order to select the most relevant features: one to rank and select the top features and another to recursively eliminate the least relevant feature. The Support Vector Machine (linear and non-linear) is the classification model included in the pipeline. Further observations on the selected features by the applied techniques were performed and discussed in relation to the available knowledge about face recognition. The present work provides an experimental study on the electroencephalogram signals acquired from an experiment in which an array of subjects were asked to identify both culprit and distractor being the culprit related to a previously shown crime scene video.
publishDate 2021
dc.date.none.fl_str_mv 2021-05-10T10:51:56Z
2021-02-22T00:00:00Z
2021-02-22
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/31348
url http://hdl.handle.net/10773/31348
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137687729340416