Analysis of eyewitness testimony using electroencephalogram signals
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/31348 |
Resumo: | The application of Brain Computer Interfaces techniques to vital crime witnesses could and probably will be a key feature in the justice system. Features from the electroencephalogram signals were extracted with information detailing their domain (time or frequency), and their spacial scalp and time placement. For both domains, two different classification pipelines were applied in order to select the most relevant features: one to rank and select the top features and another to recursively eliminate the least relevant feature. The Support Vector Machine (linear and non-linear) is the classification model included in the pipeline. Further observations on the selected features by the applied techniques were performed and discussed in relation to the available knowledge about face recognition. The present work provides an experimental study on the electroencephalogram signals acquired from an experiment in which an array of subjects were asked to identify both culprit and distractor being the culprit related to a previously shown crime scene video. |
id |
RCAP_1aec0e30bb98fc8e146fd02a0407bba8 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/31348 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Analysis of eyewitness testimony using electroencephalogram signalsEyewitnessFace recognitionBCIEEGFeature extractionSupervised machine learningSVMSVM-RFEANOVAThe application of Brain Computer Interfaces techniques to vital crime witnesses could and probably will be a key feature in the justice system. Features from the electroencephalogram signals were extracted with information detailing their domain (time or frequency), and their spacial scalp and time placement. For both domains, two different classification pipelines were applied in order to select the most relevant features: one to rank and select the top features and another to recursively eliminate the least relevant feature. The Support Vector Machine (linear and non-linear) is the classification model included in the pipeline. Further observations on the selected features by the applied techniques were performed and discussed in relation to the available knowledge about face recognition. The present work provides an experimental study on the electroencephalogram signals acquired from an experiment in which an array of subjects were asked to identify both culprit and distractor being the culprit related to a previously shown crime scene video.A aplicação de técnicas de Interfaces Cérebro-Computador a testemunhas vitais de um crime pode e provavelmente será uma funcionalidade chave no sistema de justiça. Características de sinais provenientes de eletroencefalograma foram extraídas com informações sobre o seu domínio (tempo ou frequência), e a sua localização espacial e temporal. Para ambos os domínios, dois modelos de classificação diferentes foram aplicados com vista a selecionar as características mais relevantes: um para classificar, ordenar e selecionar as características mais importantes e outro para eliminar recursivamente a característica menos relevante. O modelo utilizado para classificação foi o Support Vector Machine (linear e não linear). Outras observações sobre as características selecionadas pelas técnicas aplicadas foram realizadas e discutidas tendo em conta o conhecimento disponível sobre reconhecimento facial. O presente trabalho fornece um estudo experimental sobre os sinais de eletroencefalograma adquiridos numa experiência na qual foi pedido a um grupo de indivíduos para identificar tanto culpado como distrator, sendo que o culpado estava relacionado a um vídeo de cenário de crime mostrado anteriormente.2021-05-10T10:51:56Z2021-02-22T00:00:00Z2021-02-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/31348engMendes, Bruno Miguel Vilelainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:00:31Zoai:ria.ua.pt:10773/31348Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:03:15.389375Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Analysis of eyewitness testimony using electroencephalogram signals |
title |
Analysis of eyewitness testimony using electroencephalogram signals |
spellingShingle |
Analysis of eyewitness testimony using electroencephalogram signals Mendes, Bruno Miguel Vilela Eyewitness Face recognition BCI EEG Feature extraction Supervised machine learning SVM SVM-RFE ANOVA |
title_short |
Analysis of eyewitness testimony using electroencephalogram signals |
title_full |
Analysis of eyewitness testimony using electroencephalogram signals |
title_fullStr |
Analysis of eyewitness testimony using electroencephalogram signals |
title_full_unstemmed |
Analysis of eyewitness testimony using electroencephalogram signals |
title_sort |
Analysis of eyewitness testimony using electroencephalogram signals |
author |
Mendes, Bruno Miguel Vilela |
author_facet |
Mendes, Bruno Miguel Vilela |
author_role |
author |
dc.contributor.author.fl_str_mv |
Mendes, Bruno Miguel Vilela |
dc.subject.por.fl_str_mv |
Eyewitness Face recognition BCI EEG Feature extraction Supervised machine learning SVM SVM-RFE ANOVA |
topic |
Eyewitness Face recognition BCI EEG Feature extraction Supervised machine learning SVM SVM-RFE ANOVA |
description |
The application of Brain Computer Interfaces techniques to vital crime witnesses could and probably will be a key feature in the justice system. Features from the electroencephalogram signals were extracted with information detailing their domain (time or frequency), and their spacial scalp and time placement. For both domains, two different classification pipelines were applied in order to select the most relevant features: one to rank and select the top features and another to recursively eliminate the least relevant feature. The Support Vector Machine (linear and non-linear) is the classification model included in the pipeline. Further observations on the selected features by the applied techniques were performed and discussed in relation to the available knowledge about face recognition. The present work provides an experimental study on the electroencephalogram signals acquired from an experiment in which an array of subjects were asked to identify both culprit and distractor being the culprit related to a previously shown crime scene video. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-05-10T10:51:56Z 2021-02-22T00:00:00Z 2021-02-22 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/31348 |
url |
http://hdl.handle.net/10773/31348 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137687729340416 |