The Benefits of Automated Machine Learning in Hospitality
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/143844 |
Resumo: | Castelli, M., Pinto, D. C., Shuqair, S., Montali, D., & Vanneschi, L. (2022). The Benefits of Automated Machine Learning in Hospitality: A Step-By-Step Guide and AutoML Tool. Emerging Science Journal, 6(6), 1237-1254. https://doi.org/10.28991ESJ-2022-06-06-02. Funding:This study was supported by grant DSAIPA/DS/0113/2019 from FCT (Fundação para a Ciência e a Tecnologia), Portugal. This work was also supported by national funds through FCT (Fundação para a Ciência e a Tecnologia), under the project - UIDB/04152/2020 - Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMS. |
id |
RCAP_1b663485e7c50e7dca69e6600f4e866a |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/143844 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
The Benefits of Automated Machine Learning in HospitalityA Step-By-Step Guide and AutoML ToolArtificial IntelligenceAutomated Machine LearningBehavioral ResearchHospitalityGeneralSDG 8 - Decent Work and Economic GrowthCastelli, M., Pinto, D. C., Shuqair, S., Montali, D., & Vanneschi, L. (2022). The Benefits of Automated Machine Learning in Hospitality: A Step-By-Step Guide and AutoML Tool. Emerging Science Journal, 6(6), 1237-1254. https://doi.org/10.28991ESJ-2022-06-06-02. Funding:This study was supported by grant DSAIPA/DS/0113/2019 from FCT (Fundação para a Ciência e a Tecnologia), Portugal. This work was also supported by national funds through FCT (Fundação para a Ciência e a Tecnologia), under the project - UIDB/04152/2020 - Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMS.The manuscript presents a tool to estimate and predict data accuracy in hospitality by means of automated machine learning (AutoML). It uses a tree-based pipeline optimization tool (TPOT) as a methodological framework. The TPOT is an AutoML framework based on genetic programming, and it is particularly useful to generate classification models, for regression analysis, and to determine the most accurate algorithms and hyperparameters in hospitality. To demonstrate the presented tool’s real usefulness, we show that the TPOT findings provide further improvement, using a real-world dataset to convert key hospitality variables (customer satisfaction, loyalty) to revenue, with up to 93% prediction accuracy on unseen data.Information Management Research Center (MagIC) - NOVA Information Management SchoolNOVA Information Management School (NOVA IMS)RUNCastelli, MauroPinto, Diego CostaShuqair, SalehMontali, DavideVanneschi, Leonardo2022-09-19T22:25:54Z2022-12-012022-12-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article18application/pdfhttp://hdl.handle.net/10362/143844eng2610-9182PURE: 46625772https://doi.org/10.28991/ESJ-2022-06-06-02info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:22:37Zoai:run.unl.pt:10362/143844Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:51:10.189001Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
The Benefits of Automated Machine Learning in Hospitality A Step-By-Step Guide and AutoML Tool |
title |
The Benefits of Automated Machine Learning in Hospitality |
spellingShingle |
The Benefits of Automated Machine Learning in Hospitality Castelli, Mauro Artificial Intelligence Automated Machine Learning Behavioral Research Hospitality General SDG 8 - Decent Work and Economic Growth |
title_short |
The Benefits of Automated Machine Learning in Hospitality |
title_full |
The Benefits of Automated Machine Learning in Hospitality |
title_fullStr |
The Benefits of Automated Machine Learning in Hospitality |
title_full_unstemmed |
The Benefits of Automated Machine Learning in Hospitality |
title_sort |
The Benefits of Automated Machine Learning in Hospitality |
author |
Castelli, Mauro |
author_facet |
Castelli, Mauro Pinto, Diego Costa Shuqair, Saleh Montali, Davide Vanneschi, Leonardo |
author_role |
author |
author2 |
Pinto, Diego Costa Shuqair, Saleh Montali, Davide Vanneschi, Leonardo |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Information Management Research Center (MagIC) - NOVA Information Management School NOVA Information Management School (NOVA IMS) RUN |
dc.contributor.author.fl_str_mv |
Castelli, Mauro Pinto, Diego Costa Shuqair, Saleh Montali, Davide Vanneschi, Leonardo |
dc.subject.por.fl_str_mv |
Artificial Intelligence Automated Machine Learning Behavioral Research Hospitality General SDG 8 - Decent Work and Economic Growth |
topic |
Artificial Intelligence Automated Machine Learning Behavioral Research Hospitality General SDG 8 - Decent Work and Economic Growth |
description |
Castelli, M., Pinto, D. C., Shuqair, S., Montali, D., & Vanneschi, L. (2022). The Benefits of Automated Machine Learning in Hospitality: A Step-By-Step Guide and AutoML Tool. Emerging Science Journal, 6(6), 1237-1254. https://doi.org/10.28991ESJ-2022-06-06-02. Funding:This study was supported by grant DSAIPA/DS/0113/2019 from FCT (Fundação para a Ciência e a Tecnologia), Portugal. This work was also supported by national funds through FCT (Fundação para a Ciência e a Tecnologia), under the project - UIDB/04152/2020 - Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMS. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-09-19T22:25:54Z 2022-12-01 2022-12-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/143844 |
url |
http://hdl.handle.net/10362/143844 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2610-9182 PURE: 46625772 https://doi.org/10.28991/ESJ-2022-06-06-02 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
18 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138106758135808 |