How to apply nonlinear subspace techniques to univariate biomedical tim e series
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.26/47383 |
Resumo: | In this paper, we propose an embedding technique for univariate single-channel biomedical signals to apply projective subspace techniques. Biomedical signals are often recorded as 1-D time series; hence, they need to be transformed to multidimensional signal vectors for subspace techniques to be applicable. The transformation can be achieved by embedding an observed signal in its delayed coordinates. We propose the application of two nonlinear subspace techniques to embedded multidimensional signals and discuss their relation. The techniques consist of modified versions of singular-spectrum analysis (SSA) and kernel principal component analysis (KPCA). For illustrative purposes, both nonlinear subspace projection techniques are applied to an electroencephalogram (EEG) signal recorded in the frontal channel to extract its dominant electrooculogram (EOG) interference. Furthermore, to evaluate the performance of the algorithms, an experimental study with artificially mixed signals is presented and discussed. |
id |
RCAP_1b929ea5707e44e366142bcf688eedcb |
---|---|
oai_identifier_str |
oai:comum.rcaap.pt:10400.26/47383 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
How to apply nonlinear subspace techniques to univariate biomedical tim e seriesElectroencephalogram (EEG)electrooculogram (EOG)kernel principal component analysis (KPCA)local singular spectrum analysis (SSA)removing artifactssubspace techniques.In this paper, we propose an embedding technique for univariate single-channel biomedical signals to apply projective subspace techniques. Biomedical signals are often recorded as 1-D time series; hence, they need to be transformed to multidimensional signal vectors for subspace techniques to be applicable. The transformation can be achieved by embedding an observed signal in its delayed coordinates. We propose the application of two nonlinear subspace techniques to embedded multidimensional signals and discuss their relation. The techniques consist of modified versions of singular-spectrum analysis (SSA) and kernel principal component analysis (KPCA). For illustrative purposes, both nonlinear subspace projection techniques are applied to an electroencephalogram (EEG) signal recorded in the frontal channel to extract its dominant electrooculogram (EOG) interference. Furthermore, to evaluate the performance of the algorithms, an experimental study with artificially mixed signals is presented and discussed.[Institute of Electrical and Electronics Engineers]Repositório ComumTeixeira, AnaTomé, A. M.Böhm, M.Puntonet, Carlos G.Lang, Elmar W.2023-10-23T09:10:09Z20092009-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.26/47383enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-10-26T02:16:20Zoai:comum.rcaap.pt:10400.26/47383Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:39:33.379791Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
How to apply nonlinear subspace techniques to univariate biomedical tim e series |
title |
How to apply nonlinear subspace techniques to univariate biomedical tim e series |
spellingShingle |
How to apply nonlinear subspace techniques to univariate biomedical tim e series Teixeira, Ana Electroencephalogram (EEG) electrooculogram (EOG) kernel principal component analysis (KPCA) local singular spectrum analysis (SSA) removing artifacts subspace techniques. |
title_short |
How to apply nonlinear subspace techniques to univariate biomedical tim e series |
title_full |
How to apply nonlinear subspace techniques to univariate biomedical tim e series |
title_fullStr |
How to apply nonlinear subspace techniques to univariate biomedical tim e series |
title_full_unstemmed |
How to apply nonlinear subspace techniques to univariate biomedical tim e series |
title_sort |
How to apply nonlinear subspace techniques to univariate biomedical tim e series |
author |
Teixeira, Ana |
author_facet |
Teixeira, Ana Tomé, A. M. Böhm, M. Puntonet, Carlos G. Lang, Elmar W. |
author_role |
author |
author2 |
Tomé, A. M. Böhm, M. Puntonet, Carlos G. Lang, Elmar W. |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Repositório Comum |
dc.contributor.author.fl_str_mv |
Teixeira, Ana Tomé, A. M. Böhm, M. Puntonet, Carlos G. Lang, Elmar W. |
dc.subject.por.fl_str_mv |
Electroencephalogram (EEG) electrooculogram (EOG) kernel principal component analysis (KPCA) local singular spectrum analysis (SSA) removing artifacts subspace techniques. |
topic |
Electroencephalogram (EEG) electrooculogram (EOG) kernel principal component analysis (KPCA) local singular spectrum analysis (SSA) removing artifacts subspace techniques. |
description |
In this paper, we propose an embedding technique for univariate single-channel biomedical signals to apply projective subspace techniques. Biomedical signals are often recorded as 1-D time series; hence, they need to be transformed to multidimensional signal vectors for subspace techniques to be applicable. The transformation can be achieved by embedding an observed signal in its delayed coordinates. We propose the application of two nonlinear subspace techniques to embedded multidimensional signals and discuss their relation. The techniques consist of modified versions of singular-spectrum analysis (SSA) and kernel principal component analysis (KPCA). For illustrative purposes, both nonlinear subspace projection techniques are applied to an electroencephalogram (EEG) signal recorded in the frontal channel to extract its dominant electrooculogram (EOG) interference. Furthermore, to evaluate the performance of the algorithms, an experimental study with artificially mixed signals is presented and discussed. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009 2009-01-01T00:00:00Z 2023-10-23T09:10:09Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.26/47383 |
url |
http://hdl.handle.net/10400.26/47383 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
[Institute of Electrical and Electronics Engineers] |
publisher.none.fl_str_mv |
[Institute of Electrical and Electronics Engineers] |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133657177260032 |