Towards a linear algebra of programming
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/24650 |
Resumo: | The Algebra of Programming (AoP) is a discipline for programming from specifications using relation algebra. Specification vagueness and nondeterminism are captured by relations. (Final) implemen- tations are functions. Probabilistic functions are half way between relations and functions: they express the propensity, or like- lihood of ambiguous, multiple outputs. This paper puts forward a basis for a Linear Algebra of Programming (LAoP) extending standard AoP towards probabilistic functions. Because of the quantitative essence of these functions, the allegory of binary relations which supports the AoP has to be extended. We show that, if one restricts to discrete probability spaces, categories of matrices provide adequate support for the extension, while preserving the pointfree reasoning style typical of the AoP. |
id |
RCAP_1b92d6d23bfead49ecf485282650b8ff |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/24650 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Towards a linear algebra of programmingAlgebra of programmingQuantitative formal methodsProbabilistic reasoningScience & TechnologyThe Algebra of Programming (AoP) is a discipline for programming from specifications using relation algebra. Specification vagueness and nondeterminism are captured by relations. (Final) implemen- tations are functions. Probabilistic functions are half way between relations and functions: they express the propensity, or like- lihood of ambiguous, multiple outputs. This paper puts forward a basis for a Linear Algebra of Programming (LAoP) extending standard AoP towards probabilistic functions. Because of the quantitative essence of these functions, the allegory of binary relations which supports the AoP has to be extended. We show that, if one restricts to discrete probability spaces, categories of matrices provide adequate support for the extension, while preserving the pointfree reasoning style typical of the AoP.Fundação para a Ciência e a Tecnologia (FCT)SpringerUniversidade do MinhoOliveira, José Nuno Fonseca20122012-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/24650engOl120934-504310.1007/s00165-012-0240-9http://dx.doi.org/10.1007/s00165-012-0240-9info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:12:08Zoai:repositorium.sdum.uminho.pt:1822/24650Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:04:01.944656Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Towards a linear algebra of programming |
title |
Towards a linear algebra of programming |
spellingShingle |
Towards a linear algebra of programming Oliveira, José Nuno Fonseca Algebra of programming Quantitative formal methods Probabilistic reasoning Science & Technology |
title_short |
Towards a linear algebra of programming |
title_full |
Towards a linear algebra of programming |
title_fullStr |
Towards a linear algebra of programming |
title_full_unstemmed |
Towards a linear algebra of programming |
title_sort |
Towards a linear algebra of programming |
author |
Oliveira, José Nuno Fonseca |
author_facet |
Oliveira, José Nuno Fonseca |
author_role |
author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Oliveira, José Nuno Fonseca |
dc.subject.por.fl_str_mv |
Algebra of programming Quantitative formal methods Probabilistic reasoning Science & Technology |
topic |
Algebra of programming Quantitative formal methods Probabilistic reasoning Science & Technology |
description |
The Algebra of Programming (AoP) is a discipline for programming from specifications using relation algebra. Specification vagueness and nondeterminism are captured by relations. (Final) implemen- tations are functions. Probabilistic functions are half way between relations and functions: they express the propensity, or like- lihood of ambiguous, multiple outputs. This paper puts forward a basis for a Linear Algebra of Programming (LAoP) extending standard AoP towards probabilistic functions. Because of the quantitative essence of these functions, the allegory of binary relations which supports the AoP has to be extended. We show that, if one restricts to discrete probability spaces, categories of matrices provide adequate support for the extension, while preserving the pointfree reasoning style typical of the AoP. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012 2012-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/24650 |
url |
http://hdl.handle.net/1822/24650 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Ol12 0934-5043 10.1007/s00165-012-0240-9 http://dx.doi.org/10.1007/s00165-012-0240-9 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132447917473792 |