Design of kinematic connectors for microstructured materials produced by additive manufacturing

Detalhes bibliográficos
Autor(a) principal: Silva, Miguel R.
Data de Publicação: 2021
Outros Autores: Dias-de-Oliveira, João A., Pereira, António M., Alves, Nuno M., Sampaio, Álvaro M., Pontes, A. J.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/73893
Resumo: The main characteristic of materials with a functional gradient is the progressive composition or the structure variation across its geometry. This results in the properties variation in one or more specific directions, according to the functional application requirements. Cellular structure flexibility in tailoring properties is employed frequently to design functionally-graded materials. Topology optimisation methods are powerful tools to functionally graded materials design with cellular structure geometry, although continuity between adjacent unit-cells in gradient directions remains a restriction. It is mandatory to attain a manufacturable part to guarantee the connectedness between adjoining microstructures, namely by ensuring that the solid regions on the microstructure’s borders i.e., kinematic connectors) match the neighboring cells that share the same boundary. This study assesses the kinematic connectors generated by imposing local density restrictions in the initial design domain (i.e., nucleation) between topologically optimised representative unit-cells. Several kinematic connector examples are presented for two representatives unit-cells topology optimised for maximum bulk and shear moduli with different volume fractions restrictions and graduated Young’s modulus. Experimental mechanical tests (compression) were performed, and comparison studies were carried out between experimental and numerical Young’s modulus. The results for the single maximum bulk for the mean values for experimental compressive Young’s modulus (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>E</mi><mover accent="true"><mi mathvariant="normal">x</mi><mo>¯</mo></mover></msup></semantics></math></inline-formula>) with 60<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>%</mo><mspace width="3.33333pt"></mspace><msub><mi>V</mi><mi mathvariant="normal">f</mi></msub></mrow></semantics></math></inline-formula> show a deviation of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>9.15</mn><mo>%</mo></mrow></semantics></math></inline-formula>. The single maximum shear for the experimental compressive Young’s modulus mean values (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>E</mi><mover accent="true"><mi mathvariant="normal">x</mi><mo>¯</mo></mover></msup></semantics></math></inline-formula>) with 60<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>%</mo><mspace width="3.33333pt"></mspace><msub><mi>V</mi><mi mathvariant="normal">f</mi></msub></mrow></semantics></math></inline-formula>, exhibit a deviation of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>11.73</mn><mo>%</mo></mrow></semantics></math></inline-formula>. For graded structures, the experimental mean values of compressive Young’s moduli (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>E</mi><mover accent="true"><mi mathvariant="normal">x</mi><mo>¯</mo></mover></msup></semantics></math></inline-formula>), compared with predicted total Young’s moduli (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>E</mi><mi>Se</mi></msup></semantics></math></inline-formula>), show a deviation of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>6.96</mn></mrow></semantics></math></inline-formula> for the bulk graded structure. The main results show that the single type representative unit-cell experimental Young’s modulus with higher volume fraction presents a minor deviation compared with homogenized data. Both (i.e., bulk and shear moduli) graded microstructures show continuity between adjacent cells. The proposed method proved to be suitable for generating kinematic connections for the design of shear and bulk graduated microstructured materials.
id RCAP_1c2bd2e3fa20d277f5147c4643edf00b
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/73893
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Design of kinematic connectors for microstructured materials produced by additive manufacturingKinematic connectorsFunctionally graded materialsMicrostructuredAdditive manufacturingTopology optimisationScience & TechnologyThe main characteristic of materials with a functional gradient is the progressive composition or the structure variation across its geometry. This results in the properties variation in one or more specific directions, according to the functional application requirements. Cellular structure flexibility in tailoring properties is employed frequently to design functionally-graded materials. Topology optimisation methods are powerful tools to functionally graded materials design with cellular structure geometry, although continuity between adjacent unit-cells in gradient directions remains a restriction. It is mandatory to attain a manufacturable part to guarantee the connectedness between adjoining microstructures, namely by ensuring that the solid regions on the microstructure’s borders i.e., kinematic connectors) match the neighboring cells that share the same boundary. This study assesses the kinematic connectors generated by imposing local density restrictions in the initial design domain (i.e., nucleation) between topologically optimised representative unit-cells. Several kinematic connector examples are presented for two representatives unit-cells topology optimised for maximum bulk and shear moduli with different volume fractions restrictions and graduated Young’s modulus. Experimental mechanical tests (compression) were performed, and comparison studies were carried out between experimental and numerical Young’s modulus. The results for the single maximum bulk for the mean values for experimental compressive Young’s modulus (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>E</mi><mover accent="true"><mi mathvariant="normal">x</mi><mo>¯</mo></mover></msup></semantics></math></inline-formula>) with 60<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>%</mo><mspace width="3.33333pt"></mspace><msub><mi>V</mi><mi mathvariant="normal">f</mi></msub></mrow></semantics></math></inline-formula> show a deviation of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>9.15</mn><mo>%</mo></mrow></semantics></math></inline-formula>. The single maximum shear for the experimental compressive Young’s modulus mean values (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>E</mi><mover accent="true"><mi mathvariant="normal">x</mi><mo>¯</mo></mover></msup></semantics></math></inline-formula>) with 60<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>%</mo><mspace width="3.33333pt"></mspace><msub><mi>V</mi><mi mathvariant="normal">f</mi></msub></mrow></semantics></math></inline-formula>, exhibit a deviation of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>11.73</mn><mo>%</mo></mrow></semantics></math></inline-formula>. For graded structures, the experimental mean values of compressive Young’s moduli (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>E</mi><mover accent="true"><mi mathvariant="normal">x</mi><mo>¯</mo></mover></msup></semantics></math></inline-formula>), compared with predicted total Young’s moduli (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>E</mi><mi>Se</mi></msup></semantics></math></inline-formula>), show a deviation of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>6.96</mn></mrow></semantics></math></inline-formula> for the bulk graded structure. The main results show that the single type representative unit-cell experimental Young’s modulus with higher volume fraction presents a minor deviation compared with homogenized data. Both (i.e., bulk and shear moduli) graded microstructures show continuity between adjacent cells. The proposed method proved to be suitable for generating kinematic connections for the design of shear and bulk graduated microstructured materials.This research was funded by the Portuguese Science Funding Foundation FCT—Fundação para a Ciência e a Tecnologia (Grant No. SFRH/BD/130908/2017); PAMI—Portuguese Additive Manufacturing Initiative (Project nº22158—SAICT—AAC—01/SAICT/2016), CDRSP (UIDB/04044/2020), (UIDP/04044/2020); Add.Additive—add additive manufacturing to Portuguese industry (POCI-01- 0247-FEDER-024533).Multidisciplinary Digital Publishing Institute (MDPI)Universidade do MinhoSilva, Miguel R.Dias-de-Oliveira, João A.Pereira, António M.Alves, Nuno M.Sampaio, Álvaro M.Pontes, A. J.2021-05-062021-05-06T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/73893engSilva, M.R.; Dias-de-Oliveira, J.A.; Pereira, A.M.; Alves, N.M.; Sampaio, Á.M.; Pontes, A.J. Design of Kinematic Connectors for Microstructured Materials Produced by Additive Manufacturing. Polymers 2021, 13, 1500. https://doi.org/10.3390/polym130915002073-436010.3390/polym13091500https://www.mdpi.com/2073-4360/13/9/1500info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:07:02Zoai:repositorium.sdum.uminho.pt:1822/73893Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:57:52.250201Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Design of kinematic connectors for microstructured materials produced by additive manufacturing
title Design of kinematic connectors for microstructured materials produced by additive manufacturing
spellingShingle Design of kinematic connectors for microstructured materials produced by additive manufacturing
Silva, Miguel R.
Kinematic connectors
Functionally graded materials
Microstructured
Additive manufacturing
Topology optimisation
Science & Technology
title_short Design of kinematic connectors for microstructured materials produced by additive manufacturing
title_full Design of kinematic connectors for microstructured materials produced by additive manufacturing
title_fullStr Design of kinematic connectors for microstructured materials produced by additive manufacturing
title_full_unstemmed Design of kinematic connectors for microstructured materials produced by additive manufacturing
title_sort Design of kinematic connectors for microstructured materials produced by additive manufacturing
author Silva, Miguel R.
author_facet Silva, Miguel R.
Dias-de-Oliveira, João A.
Pereira, António M.
Alves, Nuno M.
Sampaio, Álvaro M.
Pontes, A. J.
author_role author
author2 Dias-de-Oliveira, João A.
Pereira, António M.
Alves, Nuno M.
Sampaio, Álvaro M.
Pontes, A. J.
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Silva, Miguel R.
Dias-de-Oliveira, João A.
Pereira, António M.
Alves, Nuno M.
Sampaio, Álvaro M.
Pontes, A. J.
dc.subject.por.fl_str_mv Kinematic connectors
Functionally graded materials
Microstructured
Additive manufacturing
Topology optimisation
Science & Technology
topic Kinematic connectors
Functionally graded materials
Microstructured
Additive manufacturing
Topology optimisation
Science & Technology
description The main characteristic of materials with a functional gradient is the progressive composition or the structure variation across its geometry. This results in the properties variation in one or more specific directions, according to the functional application requirements. Cellular structure flexibility in tailoring properties is employed frequently to design functionally-graded materials. Topology optimisation methods are powerful tools to functionally graded materials design with cellular structure geometry, although continuity between adjacent unit-cells in gradient directions remains a restriction. It is mandatory to attain a manufacturable part to guarantee the connectedness between adjoining microstructures, namely by ensuring that the solid regions on the microstructure’s borders i.e., kinematic connectors) match the neighboring cells that share the same boundary. This study assesses the kinematic connectors generated by imposing local density restrictions in the initial design domain (i.e., nucleation) between topologically optimised representative unit-cells. Several kinematic connector examples are presented for two representatives unit-cells topology optimised for maximum bulk and shear moduli with different volume fractions restrictions and graduated Young’s modulus. Experimental mechanical tests (compression) were performed, and comparison studies were carried out between experimental and numerical Young’s modulus. The results for the single maximum bulk for the mean values for experimental compressive Young’s modulus (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>E</mi><mover accent="true"><mi mathvariant="normal">x</mi><mo>¯</mo></mover></msup></semantics></math></inline-formula>) with 60<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>%</mo><mspace width="3.33333pt"></mspace><msub><mi>V</mi><mi mathvariant="normal">f</mi></msub></mrow></semantics></math></inline-formula> show a deviation of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>9.15</mn><mo>%</mo></mrow></semantics></math></inline-formula>. The single maximum shear for the experimental compressive Young’s modulus mean values (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>E</mi><mover accent="true"><mi mathvariant="normal">x</mi><mo>¯</mo></mover></msup></semantics></math></inline-formula>) with 60<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>%</mo><mspace width="3.33333pt"></mspace><msub><mi>V</mi><mi mathvariant="normal">f</mi></msub></mrow></semantics></math></inline-formula>, exhibit a deviation of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>11.73</mn><mo>%</mo></mrow></semantics></math></inline-formula>. For graded structures, the experimental mean values of compressive Young’s moduli (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>E</mi><mover accent="true"><mi mathvariant="normal">x</mi><mo>¯</mo></mover></msup></semantics></math></inline-formula>), compared with predicted total Young’s moduli (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>E</mi><mi>Se</mi></msup></semantics></math></inline-formula>), show a deviation of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>6.96</mn></mrow></semantics></math></inline-formula> for the bulk graded structure. The main results show that the single type representative unit-cell experimental Young’s modulus with higher volume fraction presents a minor deviation compared with homogenized data. Both (i.e., bulk and shear moduli) graded microstructures show continuity between adjacent cells. The proposed method proved to be suitable for generating kinematic connections for the design of shear and bulk graduated microstructured materials.
publishDate 2021
dc.date.none.fl_str_mv 2021-05-06
2021-05-06T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/73893
url http://hdl.handle.net/1822/73893
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Silva, M.R.; Dias-de-Oliveira, J.A.; Pereira, A.M.; Alves, N.M.; Sampaio, Á.M.; Pontes, A.J. Design of Kinematic Connectors for Microstructured Materials Produced by Additive Manufacturing. Polymers 2021, 13, 1500. https://doi.org/10.3390/polym13091500
2073-4360
10.3390/polym13091500
https://www.mdpi.com/2073-4360/13/9/1500
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute (MDPI)
publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute (MDPI)
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132367854501888