Design of kinematic connectors for microstructured materials produced by additive manufacturing
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/73893 |
Resumo: | The main characteristic of materials with a functional gradient is the progressive composition or the structure variation across its geometry. This results in the properties variation in one or more specific directions, according to the functional application requirements. Cellular structure flexibility in tailoring properties is employed frequently to design functionally-graded materials. Topology optimisation methods are powerful tools to functionally graded materials design with cellular structure geometry, although continuity between adjacent unit-cells in gradient directions remains a restriction. It is mandatory to attain a manufacturable part to guarantee the connectedness between adjoining microstructures, namely by ensuring that the solid regions on the microstructure’s borders i.e., kinematic connectors) match the neighboring cells that share the same boundary. This study assesses the kinematic connectors generated by imposing local density restrictions in the initial design domain (i.e., nucleation) between topologically optimised representative unit-cells. Several kinematic connector examples are presented for two representatives unit-cells topology optimised for maximum bulk and shear moduli with different volume fractions restrictions and graduated Young’s modulus. Experimental mechanical tests (compression) were performed, and comparison studies were carried out between experimental and numerical Young’s modulus. The results for the single maximum bulk for the mean values for experimental compressive Young’s modulus (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>E</mi><mover accent="true"><mi mathvariant="normal">x</mi><mo>¯</mo></mover></msup></semantics></math></inline-formula>) with 60<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>%</mo><mspace width="3.33333pt"></mspace><msub><mi>V</mi><mi mathvariant="normal">f</mi></msub></mrow></semantics></math></inline-formula> show a deviation of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>9.15</mn><mo>%</mo></mrow></semantics></math></inline-formula>. The single maximum shear for the experimental compressive Young’s modulus mean values (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>E</mi><mover accent="true"><mi mathvariant="normal">x</mi><mo>¯</mo></mover></msup></semantics></math></inline-formula>) with 60<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>%</mo><mspace width="3.33333pt"></mspace><msub><mi>V</mi><mi mathvariant="normal">f</mi></msub></mrow></semantics></math></inline-formula>, exhibit a deviation of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>11.73</mn><mo>%</mo></mrow></semantics></math></inline-formula>. For graded structures, the experimental mean values of compressive Young’s moduli (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>E</mi><mover accent="true"><mi mathvariant="normal">x</mi><mo>¯</mo></mover></msup></semantics></math></inline-formula>), compared with predicted total Young’s moduli (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>E</mi><mi>Se</mi></msup></semantics></math></inline-formula>), show a deviation of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>6.96</mn></mrow></semantics></math></inline-formula> for the bulk graded structure. The main results show that the single type representative unit-cell experimental Young’s modulus with higher volume fraction presents a minor deviation compared with homogenized data. Both (i.e., bulk and shear moduli) graded microstructures show continuity between adjacent cells. The proposed method proved to be suitable for generating kinematic connections for the design of shear and bulk graduated microstructured materials. |
id |
RCAP_1c2bd2e3fa20d277f5147c4643edf00b |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/73893 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Design of kinematic connectors for microstructured materials produced by additive manufacturingKinematic connectorsFunctionally graded materialsMicrostructuredAdditive manufacturingTopology optimisationScience & TechnologyThe main characteristic of materials with a functional gradient is the progressive composition or the structure variation across its geometry. This results in the properties variation in one or more specific directions, according to the functional application requirements. Cellular structure flexibility in tailoring properties is employed frequently to design functionally-graded materials. Topology optimisation methods are powerful tools to functionally graded materials design with cellular structure geometry, although continuity between adjacent unit-cells in gradient directions remains a restriction. It is mandatory to attain a manufacturable part to guarantee the connectedness between adjoining microstructures, namely by ensuring that the solid regions on the microstructure’s borders i.e., kinematic connectors) match the neighboring cells that share the same boundary. This study assesses the kinematic connectors generated by imposing local density restrictions in the initial design domain (i.e., nucleation) between topologically optimised representative unit-cells. Several kinematic connector examples are presented for two representatives unit-cells topology optimised for maximum bulk and shear moduli with different volume fractions restrictions and graduated Young’s modulus. Experimental mechanical tests (compression) were performed, and comparison studies were carried out between experimental and numerical Young’s modulus. The results for the single maximum bulk for the mean values for experimental compressive Young’s modulus (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>E</mi><mover accent="true"><mi mathvariant="normal">x</mi><mo>¯</mo></mover></msup></semantics></math></inline-formula>) with 60<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>%</mo><mspace width="3.33333pt"></mspace><msub><mi>V</mi><mi mathvariant="normal">f</mi></msub></mrow></semantics></math></inline-formula> show a deviation of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>9.15</mn><mo>%</mo></mrow></semantics></math></inline-formula>. The single maximum shear for the experimental compressive Young’s modulus mean values (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>E</mi><mover accent="true"><mi mathvariant="normal">x</mi><mo>¯</mo></mover></msup></semantics></math></inline-formula>) with 60<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>%</mo><mspace width="3.33333pt"></mspace><msub><mi>V</mi><mi mathvariant="normal">f</mi></msub></mrow></semantics></math></inline-formula>, exhibit a deviation of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>11.73</mn><mo>%</mo></mrow></semantics></math></inline-formula>. For graded structures, the experimental mean values of compressive Young’s moduli (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>E</mi><mover accent="true"><mi mathvariant="normal">x</mi><mo>¯</mo></mover></msup></semantics></math></inline-formula>), compared with predicted total Young’s moduli (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>E</mi><mi>Se</mi></msup></semantics></math></inline-formula>), show a deviation of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>6.96</mn></mrow></semantics></math></inline-formula> for the bulk graded structure. The main results show that the single type representative unit-cell experimental Young’s modulus with higher volume fraction presents a minor deviation compared with homogenized data. Both (i.e., bulk and shear moduli) graded microstructures show continuity between adjacent cells. The proposed method proved to be suitable for generating kinematic connections for the design of shear and bulk graduated microstructured materials.This research was funded by the Portuguese Science Funding Foundation FCT—Fundação para a Ciência e a Tecnologia (Grant No. SFRH/BD/130908/2017); PAMI—Portuguese Additive Manufacturing Initiative (Project nº22158—SAICT—AAC—01/SAICT/2016), CDRSP (UIDB/04044/2020), (UIDP/04044/2020); Add.Additive—add additive manufacturing to Portuguese industry (POCI-01- 0247-FEDER-024533).Multidisciplinary Digital Publishing Institute (MDPI)Universidade do MinhoSilva, Miguel R.Dias-de-Oliveira, João A.Pereira, António M.Alves, Nuno M.Sampaio, Álvaro M.Pontes, A. J.2021-05-062021-05-06T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/73893engSilva, M.R.; Dias-de-Oliveira, J.A.; Pereira, A.M.; Alves, N.M.; Sampaio, Á.M.; Pontes, A.J. Design of Kinematic Connectors for Microstructured Materials Produced by Additive Manufacturing. Polymers 2021, 13, 1500. https://doi.org/10.3390/polym130915002073-436010.3390/polym13091500https://www.mdpi.com/2073-4360/13/9/1500info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:07:02Zoai:repositorium.sdum.uminho.pt:1822/73893Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:57:52.250201Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Design of kinematic connectors for microstructured materials produced by additive manufacturing |
title |
Design of kinematic connectors for microstructured materials produced by additive manufacturing |
spellingShingle |
Design of kinematic connectors for microstructured materials produced by additive manufacturing Silva, Miguel R. Kinematic connectors Functionally graded materials Microstructured Additive manufacturing Topology optimisation Science & Technology |
title_short |
Design of kinematic connectors for microstructured materials produced by additive manufacturing |
title_full |
Design of kinematic connectors for microstructured materials produced by additive manufacturing |
title_fullStr |
Design of kinematic connectors for microstructured materials produced by additive manufacturing |
title_full_unstemmed |
Design of kinematic connectors for microstructured materials produced by additive manufacturing |
title_sort |
Design of kinematic connectors for microstructured materials produced by additive manufacturing |
author |
Silva, Miguel R. |
author_facet |
Silva, Miguel R. Dias-de-Oliveira, João A. Pereira, António M. Alves, Nuno M. Sampaio, Álvaro M. Pontes, A. J. |
author_role |
author |
author2 |
Dias-de-Oliveira, João A. Pereira, António M. Alves, Nuno M. Sampaio, Álvaro M. Pontes, A. J. |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Silva, Miguel R. Dias-de-Oliveira, João A. Pereira, António M. Alves, Nuno M. Sampaio, Álvaro M. Pontes, A. J. |
dc.subject.por.fl_str_mv |
Kinematic connectors Functionally graded materials Microstructured Additive manufacturing Topology optimisation Science & Technology |
topic |
Kinematic connectors Functionally graded materials Microstructured Additive manufacturing Topology optimisation Science & Technology |
description |
The main characteristic of materials with a functional gradient is the progressive composition or the structure variation across its geometry. This results in the properties variation in one or more specific directions, according to the functional application requirements. Cellular structure flexibility in tailoring properties is employed frequently to design functionally-graded materials. Topology optimisation methods are powerful tools to functionally graded materials design with cellular structure geometry, although continuity between adjacent unit-cells in gradient directions remains a restriction. It is mandatory to attain a manufacturable part to guarantee the connectedness between adjoining microstructures, namely by ensuring that the solid regions on the microstructure’s borders i.e., kinematic connectors) match the neighboring cells that share the same boundary. This study assesses the kinematic connectors generated by imposing local density restrictions in the initial design domain (i.e., nucleation) between topologically optimised representative unit-cells. Several kinematic connector examples are presented for two representatives unit-cells topology optimised for maximum bulk and shear moduli with different volume fractions restrictions and graduated Young’s modulus. Experimental mechanical tests (compression) were performed, and comparison studies were carried out between experimental and numerical Young’s modulus. The results for the single maximum bulk for the mean values for experimental compressive Young’s modulus (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>E</mi><mover accent="true"><mi mathvariant="normal">x</mi><mo>¯</mo></mover></msup></semantics></math></inline-formula>) with 60<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>%</mo><mspace width="3.33333pt"></mspace><msub><mi>V</mi><mi mathvariant="normal">f</mi></msub></mrow></semantics></math></inline-formula> show a deviation of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>9.15</mn><mo>%</mo></mrow></semantics></math></inline-formula>. The single maximum shear for the experimental compressive Young’s modulus mean values (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>E</mi><mover accent="true"><mi mathvariant="normal">x</mi><mo>¯</mo></mover></msup></semantics></math></inline-formula>) with 60<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>%</mo><mspace width="3.33333pt"></mspace><msub><mi>V</mi><mi mathvariant="normal">f</mi></msub></mrow></semantics></math></inline-formula>, exhibit a deviation of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>11.73</mn><mo>%</mo></mrow></semantics></math></inline-formula>. For graded structures, the experimental mean values of compressive Young’s moduli (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>E</mi><mover accent="true"><mi mathvariant="normal">x</mi><mo>¯</mo></mover></msup></semantics></math></inline-formula>), compared with predicted total Young’s moduli (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>E</mi><mi>Se</mi></msup></semantics></math></inline-formula>), show a deviation of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>6.96</mn></mrow></semantics></math></inline-formula> for the bulk graded structure. The main results show that the single type representative unit-cell experimental Young’s modulus with higher volume fraction presents a minor deviation compared with homogenized data. Both (i.e., bulk and shear moduli) graded microstructures show continuity between adjacent cells. The proposed method proved to be suitable for generating kinematic connections for the design of shear and bulk graduated microstructured materials. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-05-06 2021-05-06T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/73893 |
url |
http://hdl.handle.net/1822/73893 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Silva, M.R.; Dias-de-Oliveira, J.A.; Pereira, A.M.; Alves, N.M.; Sampaio, Á.M.; Pontes, A.J. Design of Kinematic Connectors for Microstructured Materials Produced by Additive Manufacturing. Polymers 2021, 13, 1500. https://doi.org/10.3390/polym13091500 2073-4360 10.3390/polym13091500 https://www.mdpi.com/2073-4360/13/9/1500 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute (MDPI) |
publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute (MDPI) |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132367854501888 |