Earth-Mars trajectories with lunar gravity assist study using the self-adaptive Levenberg-Marquardt Algorithm

Detalhes bibliográficos
Autor(a) principal: Rosa, Flávio Daniel Dias
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.6/10623
Resumo: As the interest in interplanetary missions is rising, new trajectories and methods should be studied and analyzed to decrease the costs and increase the capacity of transporting scientific instruments and payload to Mars. In this work, a numerical study of interplanetary trajectories between Earth and Mars is performed, using the Moon to carry out a lunar gravity assist manoeuvre, with the objective of decreasing the launch energy for the interplanetary transfer and analyze the use of the self-adaptive Levenberg-Marquardt algorithm as a differential corrector for space mission design. The obtained results are compared with the values of the direct transfer achieved with the same methods and with the estimated values for the next interplanetary transfer Windows between Earth and Mars. The results are obtained with the astrodynamics two body problem simplistic model and verified and validated with the open source NASA’s software GMAT for a more realistic approach. The self-adaptive Levenberg-Marquardt algorithm developed for this work in the programming language Python 3.6 is tested and used as a differential corrector to obtain the trajectories for the two-body problem. The results demonstrate that the self-adaptive Levenberg-Marquardt algorithm is adequate to design space missions, a lunar gravity assist can be executed in all situations studied and only in a few cases is not viable. Of the four launch windows analyzed only in one situation the lunar gravity assist does not diminish the launch energy. The results show that the energy needed to perform future Mars missions or missions to other Solar System bodies can be reduced and consequently the payload mass can be increased. The possible introduction of a new calculation method for space mission design is also shown due to the observed results.
id RCAP_1c483275836f4cfbe30b50b43d85b008
oai_identifier_str oai:ubibliorum.ubi.pt:10400.6/10623
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Earth-Mars trajectories with lunar gravity assist study using the self-adaptive Levenberg-Marquardt AlgorithmAssistência GravitacionalMarteSelf-Adaptive Levenberg-MarquardtTransferência InterplanetáriaDomínio/Área Científica::Engenharia e Tecnologia::Engenharia AeronáuticaAs the interest in interplanetary missions is rising, new trajectories and methods should be studied and analyzed to decrease the costs and increase the capacity of transporting scientific instruments and payload to Mars. In this work, a numerical study of interplanetary trajectories between Earth and Mars is performed, using the Moon to carry out a lunar gravity assist manoeuvre, with the objective of decreasing the launch energy for the interplanetary transfer and analyze the use of the self-adaptive Levenberg-Marquardt algorithm as a differential corrector for space mission design. The obtained results are compared with the values of the direct transfer achieved with the same methods and with the estimated values for the next interplanetary transfer Windows between Earth and Mars. The results are obtained with the astrodynamics two body problem simplistic model and verified and validated with the open source NASA’s software GMAT for a more realistic approach. The self-adaptive Levenberg-Marquardt algorithm developed for this work in the programming language Python 3.6 is tested and used as a differential corrector to obtain the trajectories for the two-body problem. The results demonstrate that the self-adaptive Levenberg-Marquardt algorithm is adequate to design space missions, a lunar gravity assist can be executed in all situations studied and only in a few cases is not viable. Of the four launch windows analyzed only in one situation the lunar gravity assist does not diminish the launch energy. The results show that the energy needed to perform future Mars missions or missions to other Solar System bodies can be reduced and consequently the payload mass can be increased. The possible introduction of a new calculation method for space mission design is also shown due to the observed results.Com o aumento do interesse em missões interplanetárias, novas trajetórias e métodos devem ser estudados e analisados de maneira a diminuir os custos e aumentar a capacidade de transportar instrumentação científica. Neste trabalho, é realizado um estudo numérico de trajetórias interplanetárias entre a Terra e Marte, utilizando a Lua para efetuar uma manobra de assistência gravitacional, com os objetivos de diminuir a energia necessária para a transferência interplanetária e testar e analisar o uso do algoritmo self-adaptive Levenberg-Marquardt como corretor diferencial para o desenho de missões espaciais. Os resultados obtidos são comparados com valores de transferência direta alcançados com os mesmos métodos e com os valores estimados para as próximas oportunidades de transferência interplanetária entre Terra e Marte. São obtidos resultados com o problema de dois corpos de astrodinâmica e verificados e validados com o software aberto GMAT desenvolvido pela NASA para uma abordagem mais realista. O algoritmo self-adaptive Levenberg-Marquardt desenvolvido para este trabalho na linguagem de programação Python 3.6 é testado e utilizado como corretor diferencial para obter as trajetórias para o problema de dois corpos. Os resultados demonstram que o algoritmo self-adaptive Levenberg-Marquardt é adequado para planear missões, que a assistência gravitacional lunar pode ser executada em todas as situações estudadas e que apenas em poucas ocorrências não é viável. Das 4 oportunidades de lançamento analisadas apenas em uma situação a assistência gravitacional lunar não diminuiu a energia de lançamento. Os resultados indicam que a energia necessária para efetuar futuras missões a Marte ou a outros corpos do sistema solar pode ser reduzida e consequentemente a massa de carga útil nestas missões pode ser aumentada. A possível introdução de um novo método de cálculo para desenhar missões espaciais também é demonstrado através dos resultados obtidosBousson, KouamanauBibliorumRosa, Flávio Daniel Dias2020-12-14T14:12:53Z2020-02-032019-12-192020-02-03T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.6/10623TID:202547248enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-15T09:52:33Zoai:ubibliorum.ubi.pt:10400.6/10623Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:50:32.337946Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Earth-Mars trajectories with lunar gravity assist study using the self-adaptive Levenberg-Marquardt Algorithm
title Earth-Mars trajectories with lunar gravity assist study using the self-adaptive Levenberg-Marquardt Algorithm
spellingShingle Earth-Mars trajectories with lunar gravity assist study using the self-adaptive Levenberg-Marquardt Algorithm
Rosa, Flávio Daniel Dias
Assistência Gravitacional
Marte
Self-Adaptive Levenberg-Marquardt
Transferência Interplanetária
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Aeronáutica
title_short Earth-Mars trajectories with lunar gravity assist study using the self-adaptive Levenberg-Marquardt Algorithm
title_full Earth-Mars trajectories with lunar gravity assist study using the self-adaptive Levenberg-Marquardt Algorithm
title_fullStr Earth-Mars trajectories with lunar gravity assist study using the self-adaptive Levenberg-Marquardt Algorithm
title_full_unstemmed Earth-Mars trajectories with lunar gravity assist study using the self-adaptive Levenberg-Marquardt Algorithm
title_sort Earth-Mars trajectories with lunar gravity assist study using the self-adaptive Levenberg-Marquardt Algorithm
author Rosa, Flávio Daniel Dias
author_facet Rosa, Flávio Daniel Dias
author_role author
dc.contributor.none.fl_str_mv Bousson, Kouamana
uBibliorum
dc.contributor.author.fl_str_mv Rosa, Flávio Daniel Dias
dc.subject.por.fl_str_mv Assistência Gravitacional
Marte
Self-Adaptive Levenberg-Marquardt
Transferência Interplanetária
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Aeronáutica
topic Assistência Gravitacional
Marte
Self-Adaptive Levenberg-Marquardt
Transferência Interplanetária
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Aeronáutica
description As the interest in interplanetary missions is rising, new trajectories and methods should be studied and analyzed to decrease the costs and increase the capacity of transporting scientific instruments and payload to Mars. In this work, a numerical study of interplanetary trajectories between Earth and Mars is performed, using the Moon to carry out a lunar gravity assist manoeuvre, with the objective of decreasing the launch energy for the interplanetary transfer and analyze the use of the self-adaptive Levenberg-Marquardt algorithm as a differential corrector for space mission design. The obtained results are compared with the values of the direct transfer achieved with the same methods and with the estimated values for the next interplanetary transfer Windows between Earth and Mars. The results are obtained with the astrodynamics two body problem simplistic model and verified and validated with the open source NASA’s software GMAT for a more realistic approach. The self-adaptive Levenberg-Marquardt algorithm developed for this work in the programming language Python 3.6 is tested and used as a differential corrector to obtain the trajectories for the two-body problem. The results demonstrate that the self-adaptive Levenberg-Marquardt algorithm is adequate to design space missions, a lunar gravity assist can be executed in all situations studied and only in a few cases is not viable. Of the four launch windows analyzed only in one situation the lunar gravity assist does not diminish the launch energy. The results show that the energy needed to perform future Mars missions or missions to other Solar System bodies can be reduced and consequently the payload mass can be increased. The possible introduction of a new calculation method for space mission design is also shown due to the observed results.
publishDate 2019
dc.date.none.fl_str_mv 2019-12-19
2020-12-14T14:12:53Z
2020-02-03
2020-02-03T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.6/10623
TID:202547248
url http://hdl.handle.net/10400.6/10623
identifier_str_mv TID:202547248
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136395905728512