Face verication for an access control system in unconstrained environment
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/23395 |
Resumo: | O reconhecimento facial tem vindo a receber bastante atenção ao longo dos últimos anos não só na comunidade cientifica, como também no ramo comercial. Uma das suas várias aplicações e o seu uso num controlo de acessos onde um indivíduo tem uma ou várias fotos associadas a um documento de identificação (também conhecido como verificação de identidade). Embora atualmente o estado da arte apresente muitos estudos em que tanto apresentam novos algoritmos de reconhecimento como melhorias aos já desenvolvidos, existem mesmo assim muitos problemas ligados a ambientes não controlados, a aquisição de imagem e a escolha dos algoritmos de deteção e de reconhecimento mais eficazes. Esta tese aborda um ambiente desafiador para a verificação facial: um cenário não controlado para o acesso a infraestruturas desportivas. Uma vez que não existem condições de iluminação controladas nem plano de fundo controlado, isto torna um cenário complicado para a implementação de um sistema de verificação facial. Esta tese apresenta um estudo sobre os mais importantes algoritmos de detecção e reconhecimento facial assim como técnicas de pré-processamento tais como o alinhamento facial, a igualização de histograma, com o objetivo de melhorar a performance dos mesmos. Também em são apresentados dois métodos para a aquisição de imagens envolvendo a seleção de imagens e calibração da câmara. São apresentados resultados experimentais detalhados baseados em duas bases de dados criadas especificamente para este estudo. No uso de técnicas de pré-processamento apresentadas, foi possível presenciar melhorias até 20% do desempenho dos algoritmos de reconhecimento referentes a verificação de identidade. Com os métodos apresentados para os testes ao ar livre, foram conseguidas melhorias na ordem dos 30%. |
id |
RCAP_1c522e63365557760e2c7cb27d0f940d |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/23395 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Face verication for an access control system in unconstrained environmentReconhecimento facial (Ciência de computadores)Processamento digital de imagemEngenharia eletrónicaO reconhecimento facial tem vindo a receber bastante atenção ao longo dos últimos anos não só na comunidade cientifica, como também no ramo comercial. Uma das suas várias aplicações e o seu uso num controlo de acessos onde um indivíduo tem uma ou várias fotos associadas a um documento de identificação (também conhecido como verificação de identidade). Embora atualmente o estado da arte apresente muitos estudos em que tanto apresentam novos algoritmos de reconhecimento como melhorias aos já desenvolvidos, existem mesmo assim muitos problemas ligados a ambientes não controlados, a aquisição de imagem e a escolha dos algoritmos de deteção e de reconhecimento mais eficazes. Esta tese aborda um ambiente desafiador para a verificação facial: um cenário não controlado para o acesso a infraestruturas desportivas. Uma vez que não existem condições de iluminação controladas nem plano de fundo controlado, isto torna um cenário complicado para a implementação de um sistema de verificação facial. Esta tese apresenta um estudo sobre os mais importantes algoritmos de detecção e reconhecimento facial assim como técnicas de pré-processamento tais como o alinhamento facial, a igualização de histograma, com o objetivo de melhorar a performance dos mesmos. Também em são apresentados dois métodos para a aquisição de imagens envolvendo a seleção de imagens e calibração da câmara. São apresentados resultados experimentais detalhados baseados em duas bases de dados criadas especificamente para este estudo. No uso de técnicas de pré-processamento apresentadas, foi possível presenciar melhorias até 20% do desempenho dos algoritmos de reconhecimento referentes a verificação de identidade. Com os métodos apresentados para os testes ao ar livre, foram conseguidas melhorias na ordem dos 30%.Face Recognition has been received great attention over the last years, not only on the research community, but also on the commercial side. One of the many uses of face recognition is its use on access control systems where a person has one or several photos associated to an Identi cation Document (also known as identity veri cation). Although there are many studies nowadays, both presenting new algorithms or just improvements of the already developed ones, there are still many open problems regarding face recognition in uncontrolled environments, from the image acquisition conditions to the choice of the most e ective detection and recognition algorithms, just to name a few. This thesis addresses a challenging environment for face veri cation: an unconstrained environment for sports infrastructures access. As there are no controlled lightning conditions nor controlled background, this makes a di cult scenario to implement a face veri cation system. This thesis presents a study of some of the most important facial detection and recognition algorithms as well as some pre-processing techniques, such as face alignment and histogram equalization, with the aim to improve their performance. It also introduces some methods for a more e cient image acquisition based on image selection and camera calibration, specially designed for addressing this problem. Detailed experimental results are presented based on two new databases created speci cally for this study. Using pre-processing techniques, it was possible to improve the recognition algorithms performances up to 20% regarding veri cation results. With the methods presented for the outdoor tests, performances had improvements up to 30%Universidade de Aveiro2018-06-05T19:19:59Z2017-01-01T00:00:00Z2017info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/23395TID:201937832engLopes, Daniel Pedro Ferreirainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:45:34Zoai:ria.ua.pt:10773/23395Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:57:10.323358Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Face verication for an access control system in unconstrained environment |
title |
Face verication for an access control system in unconstrained environment |
spellingShingle |
Face verication for an access control system in unconstrained environment Lopes, Daniel Pedro Ferreira Reconhecimento facial (Ciência de computadores) Processamento digital de imagem Engenharia eletrónica |
title_short |
Face verication for an access control system in unconstrained environment |
title_full |
Face verication for an access control system in unconstrained environment |
title_fullStr |
Face verication for an access control system in unconstrained environment |
title_full_unstemmed |
Face verication for an access control system in unconstrained environment |
title_sort |
Face verication for an access control system in unconstrained environment |
author |
Lopes, Daniel Pedro Ferreira |
author_facet |
Lopes, Daniel Pedro Ferreira |
author_role |
author |
dc.contributor.author.fl_str_mv |
Lopes, Daniel Pedro Ferreira |
dc.subject.por.fl_str_mv |
Reconhecimento facial (Ciência de computadores) Processamento digital de imagem Engenharia eletrónica |
topic |
Reconhecimento facial (Ciência de computadores) Processamento digital de imagem Engenharia eletrónica |
description |
O reconhecimento facial tem vindo a receber bastante atenção ao longo dos últimos anos não só na comunidade cientifica, como também no ramo comercial. Uma das suas várias aplicações e o seu uso num controlo de acessos onde um indivíduo tem uma ou várias fotos associadas a um documento de identificação (também conhecido como verificação de identidade). Embora atualmente o estado da arte apresente muitos estudos em que tanto apresentam novos algoritmos de reconhecimento como melhorias aos já desenvolvidos, existem mesmo assim muitos problemas ligados a ambientes não controlados, a aquisição de imagem e a escolha dos algoritmos de deteção e de reconhecimento mais eficazes. Esta tese aborda um ambiente desafiador para a verificação facial: um cenário não controlado para o acesso a infraestruturas desportivas. Uma vez que não existem condições de iluminação controladas nem plano de fundo controlado, isto torna um cenário complicado para a implementação de um sistema de verificação facial. Esta tese apresenta um estudo sobre os mais importantes algoritmos de detecção e reconhecimento facial assim como técnicas de pré-processamento tais como o alinhamento facial, a igualização de histograma, com o objetivo de melhorar a performance dos mesmos. Também em são apresentados dois métodos para a aquisição de imagens envolvendo a seleção de imagens e calibração da câmara. São apresentados resultados experimentais detalhados baseados em duas bases de dados criadas especificamente para este estudo. No uso de técnicas de pré-processamento apresentadas, foi possível presenciar melhorias até 20% do desempenho dos algoritmos de reconhecimento referentes a verificação de identidade. Com os métodos apresentados para os testes ao ar livre, foram conseguidas melhorias na ordem dos 30%. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-01-01T00:00:00Z 2017 2018-06-05T19:19:59Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/23395 TID:201937832 |
url |
http://hdl.handle.net/10773/23395 |
identifier_str_mv |
TID:201937832 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade de Aveiro |
publisher.none.fl_str_mv |
Universidade de Aveiro |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137625518374912 |