Binary models with misclassification in the variable of interest
Autor(a) principal: | |
---|---|
Data de Publicação: | 2004 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10174/8412 |
Resumo: | In this paper we propose a general framework to deal with datasets where a binary outcome is subject to misclassification and, for some sampling units, neither the error-prone variable of interest nor the covariates are recorded. A model to describe the observed data is for-malized and eficient likelihood-based generalized method of moments (GMM) estimators are suggested. These estimators merely require the formulation of the conditional distribution of the latent outcome given the covariates. The conditional probabilities which describe the error and the nonresponse mechanisms are estimated simultaneously with the parameters of inter-est. In a small Monte Carlo simulation study our GMM estimators revealed a very promising performance. |
id |
RCAP_1c75e0805b2f1d38f6740e11e8313455 |
---|---|
oai_identifier_str |
oai:dspace.uevora.pt:10174/8412 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Binary models with misclassification in the variable of interestnonignorable nonresponsemisclassificationgeneralized method of moments estimationIn this paper we propose a general framework to deal with datasets where a binary outcome is subject to misclassification and, for some sampling units, neither the error-prone variable of interest nor the covariates are recorded. A model to describe the observed data is for-malized and eficient likelihood-based generalized method of moments (GMM) estimators are suggested. These estimators merely require the formulation of the conditional distribution of the latent outcome given the covariates. The conditional probabilities which describe the error and the nonresponse mechanisms are estimated simultaneously with the parameters of inter-est. In a small Monte Carlo simulation study our GMM estimators revealed a very promising performance.2013-04-03T11:29:13Z2013-04-032004-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/8412http://hdl.handle.net/10174/8412engRamalho, E. (2004), Binary models with misclassification in the variable of interest and nonignorable nonresponse, Documento de Trabalho nº 2004/03, Universidade de Évora, Departamento de Economia.20ela@uevora.ptC51, C523_2004Department of Economics, University of ÉvoraRamalho, Esmeraldainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T18:49:21Zoai:dspace.uevora.pt:10174/8412Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:02:40.316593Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Binary models with misclassification in the variable of interest |
title |
Binary models with misclassification in the variable of interest |
spellingShingle |
Binary models with misclassification in the variable of interest Ramalho, Esmeralda nonignorable nonresponse misclassification generalized method of moments estimation |
title_short |
Binary models with misclassification in the variable of interest |
title_full |
Binary models with misclassification in the variable of interest |
title_fullStr |
Binary models with misclassification in the variable of interest |
title_full_unstemmed |
Binary models with misclassification in the variable of interest |
title_sort |
Binary models with misclassification in the variable of interest |
author |
Ramalho, Esmeralda |
author_facet |
Ramalho, Esmeralda |
author_role |
author |
dc.contributor.author.fl_str_mv |
Ramalho, Esmeralda |
dc.subject.por.fl_str_mv |
nonignorable nonresponse misclassification generalized method of moments estimation |
topic |
nonignorable nonresponse misclassification generalized method of moments estimation |
description |
In this paper we propose a general framework to deal with datasets where a binary outcome is subject to misclassification and, for some sampling units, neither the error-prone variable of interest nor the covariates are recorded. A model to describe the observed data is for-malized and eficient likelihood-based generalized method of moments (GMM) estimators are suggested. These estimators merely require the formulation of the conditional distribution of the latent outcome given the covariates. The conditional probabilities which describe the error and the nonresponse mechanisms are estimated simultaneously with the parameters of inter-est. In a small Monte Carlo simulation study our GMM estimators revealed a very promising performance. |
publishDate |
2004 |
dc.date.none.fl_str_mv |
2004-01-01T00:00:00Z 2013-04-03T11:29:13Z 2013-04-03 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10174/8412 http://hdl.handle.net/10174/8412 |
url |
http://hdl.handle.net/10174/8412 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Ramalho, E. (2004), Binary models with misclassification in the variable of interest and nonignorable nonresponse, Documento de Trabalho nº 2004/03, Universidade de Évora, Departamento de Economia. 20 ela@uevora.pt C51, C52 3_2004 Department of Economics, University of Évora |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136510629380096 |