Electricity Price Forecasting Methods Applied to Spanish Electricity Market
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.22/9365 |
Resumo: | Forecasting electricity prices is a fundamental task for all type of markets participants including electricity markets. There are factors that bring unce1tainty to price formation, such as demand forecasting, fuel prices, player's strategies, regulatory changes, weather conditions and technical restrictions and generation availability. In addition, the particular characteristics of electricity (supply must be in balance with demand) make this task more complicated. So, it is necessary to develop accurate and robust techniques on a sho1t-term (days) and long-term basis (months). This work presents two methodologies to be applied to long-term electricity prices forecasting (months) in Spanish electricity market for a glven period. A study case with real data is presented and discussed in detail. |
id |
RCAP_1c86e1b2b86c7279a5b604d1ca5c14a4 |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/9365 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Electricity Price Forecasting Methods Applied to Spanish Electricity MarketArtificial neural networksElectricity MarketsPrice ForecastingRegression ModelsForecasting electricity prices is a fundamental task for all type of markets participants including electricity markets. There are factors that bring unce1tainty to price formation, such as demand forecasting, fuel prices, player's strategies, regulatory changes, weather conditions and technical restrictions and generation availability. In addition, the particular characteristics of electricity (supply must be in balance with demand) make this task more complicated. So, it is necessary to develop accurate and robust techniques on a sho1t-term (days) and long-term basis (months). This work presents two methodologies to be applied to long-term electricity prices forecasting (months) in Spanish electricity market for a glven period. A study case with real data is presented and discussed in detail.Purple Gate PublishingRepositório Científico do Instituto Politécnico do PortoOrtiz, M.Ukar, O.Azevedo, FilipeMugica, A.2013-042117-01-01T00:00:00Z2013-04-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/9365eng1889-7762metadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T12:49:58Zoai:recipp.ipp.pt:10400.22/9365Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:29:31.322466Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Electricity Price Forecasting Methods Applied to Spanish Electricity Market |
title |
Electricity Price Forecasting Methods Applied to Spanish Electricity Market |
spellingShingle |
Electricity Price Forecasting Methods Applied to Spanish Electricity Market Ortiz, M. Artificial neural networks Electricity Markets Price Forecasting Regression Models |
title_short |
Electricity Price Forecasting Methods Applied to Spanish Electricity Market |
title_full |
Electricity Price Forecasting Methods Applied to Spanish Electricity Market |
title_fullStr |
Electricity Price Forecasting Methods Applied to Spanish Electricity Market |
title_full_unstemmed |
Electricity Price Forecasting Methods Applied to Spanish Electricity Market |
title_sort |
Electricity Price Forecasting Methods Applied to Spanish Electricity Market |
author |
Ortiz, M. |
author_facet |
Ortiz, M. Ukar, O. Azevedo, Filipe Mugica, A. |
author_role |
author |
author2 |
Ukar, O. Azevedo, Filipe Mugica, A. |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Repositório Científico do Instituto Politécnico do Porto |
dc.contributor.author.fl_str_mv |
Ortiz, M. Ukar, O. Azevedo, Filipe Mugica, A. |
dc.subject.por.fl_str_mv |
Artificial neural networks Electricity Markets Price Forecasting Regression Models |
topic |
Artificial neural networks Electricity Markets Price Forecasting Regression Models |
description |
Forecasting electricity prices is a fundamental task for all type of markets participants including electricity markets. There are factors that bring unce1tainty to price formation, such as demand forecasting, fuel prices, player's strategies, regulatory changes, weather conditions and technical restrictions and generation availability. In addition, the particular characteristics of electricity (supply must be in balance with demand) make this task more complicated. So, it is necessary to develop accurate and robust techniques on a sho1t-term (days) and long-term basis (months). This work presents two methodologies to be applied to long-term electricity prices forecasting (months) in Spanish electricity market for a glven period. A study case with real data is presented and discussed in detail. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-04 2013-04-01T00:00:00Z 2117-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/9365 |
url |
http://hdl.handle.net/10400.22/9365 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1889-7762 |
dc.rights.driver.fl_str_mv |
metadata only access info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
metadata only access |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Purple Gate Publishing |
publisher.none.fl_str_mv |
Purple Gate Publishing |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131390947622912 |