A multi-task convolutional neural network for classification and segmentation of chronic venous disorders

Detalhes bibliográficos
Autor(a) principal: Oliveira, Bruno
Data de Publicação: 2023
Outros Autores: Torres, Helena R, Morais, Pedro, Veloso, Fernando, Baptista, António L., Fonseca, Jaime C., Vilaça, João L.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/1822/90506
Resumo: Supplementary Information: The online version contains supplementary material available at https://doi.org/ 10.1038/s41598-022-27089-8.
id RCAP_1cabf4e982f87955a8898988bd341866
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/90506
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling A multi-task convolutional neural network for classification and segmentation of chronic venous disordersAgedHumansEuropeImage Processing, Computer-AssistedNorth AmericaChronic DiseaseCardiovascular DiseasesNeural Networks, ComputerVeinsEngenharia e Tecnologia::Engenharia MédicaScience & TechnologySaúde de qualidadeSupplementary Information: The online version contains supplementary material available at https://doi.org/ 10.1038/s41598-022-27089-8.Chronic Venous Disorders (CVD) of the lower limbs are one of the most prevalent medical conditions, affecting 35% of adults in Europe and North America. Due to the exponential growth of the aging population and the worsening of CVD with age, it is expected that the healthcare costs and the resources needed for the treatment of CVD will increase in the coming years. The early diagnosis of CVD is fundamental in treatment planning, while the monitoring of its treatment is fundamental to assess a patient's condition and quantify the evolution of CVD. However, correct diagnosis relies on a qualitative approach through visual recognition of the various venous disorders, being time-consuming and highly dependent on the physician's expertise. In this paper, we propose a novel automatic strategy for the joint segmentation and classification of CVDs. The strategy relies on a multi-task deep learning network, denominated VENet, that simultaneously solves segmentation and classification tasks, exploiting the information of both tasks to increase learning efficiency, ultimately improving their performance. The proposed method was compared against state-of-the-art strategies in a dataset of 1376 CVD images. Experiments showed that the VENet achieved a classification performance of 96.4%, 96.4%, and 97.2% for accuracy, precision, and recall, respectively, and a segmentation performance of 75.4%, 76.7.0%, 76.7% for the Dice coefficient, precision, and recall, respectively. The joint formulation increased the robustness of both tasks when compared to the conventional classification or segmentation strategies, proving its added value, mainly for the segmentation of small lesions.Te authors acknowledge Fundação para a Ciência e a Tecnologia (FCT), Portugal and the European Social Found, European Union, for funding support through the “Programa Operacional Capital Humano” (POCH) in the scope of the PhD grants SFRH/BD/136721/2018 (B. Oliveira), SFRH/BD/136670/2018 (H. Torres), and SFRH/BD/131545/2017 (F. Veloso). Moreover, authors gratefully acknowledge the funding of the projects "NORTE 01-0145-FEDER-000045” and "NORTE-01-0145-FEDER-000059", supported by Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the Euro pean Regional Development Fund (FEDER). It was also funded by national funds, through the FCT and FCT/MCTES in the scope of the project UIDB/05549/2020 and UIDP/05549/2020. Te authors would like to thank Ederson A. G. Dorileo, and co-authors for providing the ULCER dataset. Moreover, the authors also would like to thank Xiaoxiao Sun and co-authors for providing the SD-198 dataset. Finally, the authors would like to thank you Neusa Tenreiro and other healthcare that helped on the acquisition of the images.Nature ResearchUniversidade do MinhoOliveira, BrunoTorres, Helena RMorais, PedroVeloso, FernandoBaptista, António L.Fonseca, Jaime C.Vilaça, João L.2023-12-142023-12-14T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/90506engOliveira, B., Torres, H.R., Morais, P. et al. A multi-task convolutional neural network for classification and segmentation of chronic venous disorders. Sci Rep 13, 761 (2023). https://doi.org/10.1038/s41598-022-27089-82045-232210.1038/s41598-022-27089-836641527761https://www.nature.com/articles/s41598-022-27089-8info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-11T05:36:01Zoai:repositorium.sdum.uminho.pt:1822/90506Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-11T05:36:01Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv A multi-task convolutional neural network for classification and segmentation of chronic venous disorders
title A multi-task convolutional neural network for classification and segmentation of chronic venous disorders
spellingShingle A multi-task convolutional neural network for classification and segmentation of chronic venous disorders
Oliveira, Bruno
Aged
Humans
Europe
Image Processing, Computer-Assisted
North America
Chronic Disease
Cardiovascular Diseases
Neural Networks, Computer
Veins
Engenharia e Tecnologia::Engenharia Médica
Science & Technology
Saúde de qualidade
title_short A multi-task convolutional neural network for classification and segmentation of chronic venous disorders
title_full A multi-task convolutional neural network for classification and segmentation of chronic venous disorders
title_fullStr A multi-task convolutional neural network for classification and segmentation of chronic venous disorders
title_full_unstemmed A multi-task convolutional neural network for classification and segmentation of chronic venous disorders
title_sort A multi-task convolutional neural network for classification and segmentation of chronic venous disorders
author Oliveira, Bruno
author_facet Oliveira, Bruno
Torres, Helena R
Morais, Pedro
Veloso, Fernando
Baptista, António L.
Fonseca, Jaime C.
Vilaça, João L.
author_role author
author2 Torres, Helena R
Morais, Pedro
Veloso, Fernando
Baptista, António L.
Fonseca, Jaime C.
Vilaça, João L.
author2_role author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Oliveira, Bruno
Torres, Helena R
Morais, Pedro
Veloso, Fernando
Baptista, António L.
Fonseca, Jaime C.
Vilaça, João L.
dc.subject.por.fl_str_mv Aged
Humans
Europe
Image Processing, Computer-Assisted
North America
Chronic Disease
Cardiovascular Diseases
Neural Networks, Computer
Veins
Engenharia e Tecnologia::Engenharia Médica
Science & Technology
Saúde de qualidade
topic Aged
Humans
Europe
Image Processing, Computer-Assisted
North America
Chronic Disease
Cardiovascular Diseases
Neural Networks, Computer
Veins
Engenharia e Tecnologia::Engenharia Médica
Science & Technology
Saúde de qualidade
description Supplementary Information: The online version contains supplementary material available at https://doi.org/ 10.1038/s41598-022-27089-8.
publishDate 2023
dc.date.none.fl_str_mv 2023-12-14
2023-12-14T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1822/90506
url https://hdl.handle.net/1822/90506
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Oliveira, B., Torres, H.R., Morais, P. et al. A multi-task convolutional neural network for classification and segmentation of chronic venous disorders. Sci Rep 13, 761 (2023). https://doi.org/10.1038/s41598-022-27089-8
2045-2322
10.1038/s41598-022-27089-8
36641527
761
https://www.nature.com/articles/s41598-022-27089-8
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Nature Research
publisher.none.fl_str_mv Nature Research
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817544675006873600