Greedy Solvable Knapsacks: Identification and Relaxations

Detalhes bibliográficos
Autor(a) principal: Amado, Lígia
Data de Publicação: 1992
Outros Autores: Bárcia, Paulo
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/85757
Resumo: The family K of the feasible solutions for a 0-1 Knapsack with positive coefficients, K={l⊂N:Σi∈Iai≤b}, is an independence system over N={1,...,n}. In some cases, for instance when all the ai have the same value, this independence system is a matroid over N. We will say then that the knapsack is greedy solvable. In the first part of this paper we study the conditions for a knapsack to be greedy solvable. We present necessary and sufficient conditions, verifiable in polynomial time, for K to be a member of a finite family of matroids over N. When those conditions are not met it seems natural to look for greedy solvable relaxations for the knapsack problem. In the second part of the paper we study a family of matroidal relaxations for the 0-1 knapsack problem. We prove that those relaxations dominate the usual linear programming one for this problem and we present some computational results in order to illustrate that domination.
id RCAP_1dfa550091b2071f609890acb25fbbed
oai_identifier_str oai:run.unl.pt:10362/85757
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Greedy Solvable Knapsacks: Identification and Relaxations0-1 KnapsackRelaxationsMatroidsThe family K of the feasible solutions for a 0-1 Knapsack with positive coefficients, K={l⊂N:Σi∈Iai≤b}, is an independence system over N={1,...,n}. In some cases, for instance when all the ai have the same value, this independence system is a matroid over N. We will say then that the knapsack is greedy solvable. In the first part of this paper we study the conditions for a knapsack to be greedy solvable. We present necessary and sufficient conditions, verifiable in polynomial time, for K to be a member of a finite family of matroids over N. When those conditions are not met it seems natural to look for greedy solvable relaxations for the knapsack problem. In the second part of the paper we study a family of matroidal relaxations for the 0-1 knapsack problem. We prove that those relaxations dominate the usual linear programming one for this problem and we present some computational results in order to illustrate that domination.Nova SBERUNAmado, LígiaBárcia, Paulo2019-10-29T11:27:53Z1992-041992-04-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10362/85757engAmado, Lígia and Bárcia, Paulo, Greedy Solvable Knapsacks: Identification and Relaxations (April, 1992). FEUNL Working Paper Series No. 182info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-22T17:41:56Zoai:run.unl.pt:10362/85757Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-22T17:41:56Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Greedy Solvable Knapsacks: Identification and Relaxations
title Greedy Solvable Knapsacks: Identification and Relaxations
spellingShingle Greedy Solvable Knapsacks: Identification and Relaxations
Amado, Lígia
0-1 Knapsack
Relaxations
Matroids
title_short Greedy Solvable Knapsacks: Identification and Relaxations
title_full Greedy Solvable Knapsacks: Identification and Relaxations
title_fullStr Greedy Solvable Knapsacks: Identification and Relaxations
title_full_unstemmed Greedy Solvable Knapsacks: Identification and Relaxations
title_sort Greedy Solvable Knapsacks: Identification and Relaxations
author Amado, Lígia
author_facet Amado, Lígia
Bárcia, Paulo
author_role author
author2 Bárcia, Paulo
author2_role author
dc.contributor.none.fl_str_mv RUN
dc.contributor.author.fl_str_mv Amado, Lígia
Bárcia, Paulo
dc.subject.por.fl_str_mv 0-1 Knapsack
Relaxations
Matroids
topic 0-1 Knapsack
Relaxations
Matroids
description The family K of the feasible solutions for a 0-1 Knapsack with positive coefficients, K={l⊂N:Σi∈Iai≤b}, is an independence system over N={1,...,n}. In some cases, for instance when all the ai have the same value, this independence system is a matroid over N. We will say then that the knapsack is greedy solvable. In the first part of this paper we study the conditions for a knapsack to be greedy solvable. We present necessary and sufficient conditions, verifiable in polynomial time, for K to be a member of a finite family of matroids over N. When those conditions are not met it seems natural to look for greedy solvable relaxations for the knapsack problem. In the second part of the paper we study a family of matroidal relaxations for the 0-1 knapsack problem. We prove that those relaxations dominate the usual linear programming one for this problem and we present some computational results in order to illustrate that domination.
publishDate 1992
dc.date.none.fl_str_mv 1992-04
1992-04-01T00:00:00Z
2019-10-29T11:27:53Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/85757
url http://hdl.handle.net/10362/85757
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Amado, Lígia and Bárcia, Paulo, Greedy Solvable Knapsacks: Identification and Relaxations (April, 1992). FEUNL Working Paper Series No. 182
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Nova SBE
publisher.none.fl_str_mv Nova SBE
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817545714672074752