Biomedical information extraction for matching patients to clinical trials

Detalhes bibliográficos
Autor(a) principal: Araújo, Gonçalo Carmo de
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/61552
Resumo: Digital Medical information had an astonishing growth on the last decades, driven by an unprecedented number of medical writers, which lead to a complete revolution in what and how much information is available to the health professionals. The problem with this wave of information is that performing a precise selection of the information retrieved by medical information repositories is very exhaustive and time consuming for physicians. This is one of the biggest challenges for physicians with the new digital era: how to reduce the time spent finding the perfect matching document for a patient (e.g. intervention articles, clinical trial, prescriptions). Precision Medicine (PM) 2017 is the track by the Text REtrieval Conference (TREC), that is focused on this type of challenges exclusively for oncology. Using a dataset with a large amount of clinical trials, this track is a good real life example on how information retrieval solutions can be used to solve this types of problems. This track can be a very good starting point for applying information extraction and retrieval methods, in a very complex domain. The purpose of this thesis is to improve a system designed by the NovaSearch team for TREC PM 2017 Clinical Trials task, which got ranked on the top-5 systems of 2017. The NovaSearch team also participated on the 2018 track and got a 15% increase on precision compared to the 2017 one. It was used multiple IR techniques for information extraction and processing of data, including rank fusion, query expansion (e.g. Pseudo relevance feedback, Mesh terms expansion) and experiments with Learning to Rank (LETOR) algorithms. Our goal is to retrieve the best possible set of trials for a given patient, using precise documents filters to exclude the unwanted clinical trials. This work can open doors in what can be done for searching and perceiving the criteria to exclude or include the trials, helping physicians even on the more complex and difficult information retrieval tasks.
id RCAP_1e02334a993465cd02763308686db078
oai_identifier_str oai:run.unl.pt:10362/61552
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Biomedical information extraction for matching patients to clinical trialsMedical Text RetrievalQuery expansionInformation RetrievalRank FusionInformation ExtractionDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaDigital Medical information had an astonishing growth on the last decades, driven by an unprecedented number of medical writers, which lead to a complete revolution in what and how much information is available to the health professionals. The problem with this wave of information is that performing a precise selection of the information retrieved by medical information repositories is very exhaustive and time consuming for physicians. This is one of the biggest challenges for physicians with the new digital era: how to reduce the time spent finding the perfect matching document for a patient (e.g. intervention articles, clinical trial, prescriptions). Precision Medicine (PM) 2017 is the track by the Text REtrieval Conference (TREC), that is focused on this type of challenges exclusively for oncology. Using a dataset with a large amount of clinical trials, this track is a good real life example on how information retrieval solutions can be used to solve this types of problems. This track can be a very good starting point for applying information extraction and retrieval methods, in a very complex domain. The purpose of this thesis is to improve a system designed by the NovaSearch team for TREC PM 2017 Clinical Trials task, which got ranked on the top-5 systems of 2017. The NovaSearch team also participated on the 2018 track and got a 15% increase on precision compared to the 2017 one. It was used multiple IR techniques for information extraction and processing of data, including rank fusion, query expansion (e.g. Pseudo relevance feedback, Mesh terms expansion) and experiments with Learning to Rank (LETOR) algorithms. Our goal is to retrieve the best possible set of trials for a given patient, using precise documents filters to exclude the unwanted clinical trials. This work can open doors in what can be done for searching and perceiving the criteria to exclude or include the trials, helping physicians even on the more complex and difficult information retrieval tasks.Magalhães, JoãoMourão, AndréRUNAraújo, Gonçalo Carmo de2019-02-25T11:00:58Z2018-1220182018-12-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/61552enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:29:14Zoai:run.unl.pt:10362/61552Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:33:38.356400Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Biomedical information extraction for matching patients to clinical trials
title Biomedical information extraction for matching patients to clinical trials
spellingShingle Biomedical information extraction for matching patients to clinical trials
Araújo, Gonçalo Carmo de
Medical Text Retrieval
Query expansion
Information Retrieval
Rank Fusion
Information Extraction
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
title_short Biomedical information extraction for matching patients to clinical trials
title_full Biomedical information extraction for matching patients to clinical trials
title_fullStr Biomedical information extraction for matching patients to clinical trials
title_full_unstemmed Biomedical information extraction for matching patients to clinical trials
title_sort Biomedical information extraction for matching patients to clinical trials
author Araújo, Gonçalo Carmo de
author_facet Araújo, Gonçalo Carmo de
author_role author
dc.contributor.none.fl_str_mv Magalhães, João
Mourão, André
RUN
dc.contributor.author.fl_str_mv Araújo, Gonçalo Carmo de
dc.subject.por.fl_str_mv Medical Text Retrieval
Query expansion
Information Retrieval
Rank Fusion
Information Extraction
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
topic Medical Text Retrieval
Query expansion
Information Retrieval
Rank Fusion
Information Extraction
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
description Digital Medical information had an astonishing growth on the last decades, driven by an unprecedented number of medical writers, which lead to a complete revolution in what and how much information is available to the health professionals. The problem with this wave of information is that performing a precise selection of the information retrieved by medical information repositories is very exhaustive and time consuming for physicians. This is one of the biggest challenges for physicians with the new digital era: how to reduce the time spent finding the perfect matching document for a patient (e.g. intervention articles, clinical trial, prescriptions). Precision Medicine (PM) 2017 is the track by the Text REtrieval Conference (TREC), that is focused on this type of challenges exclusively for oncology. Using a dataset with a large amount of clinical trials, this track is a good real life example on how information retrieval solutions can be used to solve this types of problems. This track can be a very good starting point for applying information extraction and retrieval methods, in a very complex domain. The purpose of this thesis is to improve a system designed by the NovaSearch team for TREC PM 2017 Clinical Trials task, which got ranked on the top-5 systems of 2017. The NovaSearch team also participated on the 2018 track and got a 15% increase on precision compared to the 2017 one. It was used multiple IR techniques for information extraction and processing of data, including rank fusion, query expansion (e.g. Pseudo relevance feedback, Mesh terms expansion) and experiments with Learning to Rank (LETOR) algorithms. Our goal is to retrieve the best possible set of trials for a given patient, using precise documents filters to exclude the unwanted clinical trials. This work can open doors in what can be done for searching and perceiving the criteria to exclude or include the trials, helping physicians even on the more complex and difficult information retrieval tasks.
publishDate 2018
dc.date.none.fl_str_mv 2018-12
2018
2018-12-01T00:00:00Z
2019-02-25T11:00:58Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/61552
url http://hdl.handle.net/10362/61552
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137958256705536