Methods for analysis of Ca2+/H+ antiport activity in synaptic vesicles isolated from sheep brain cortex
Autor(a) principal: | |
---|---|
Data de Publicação: | 2000 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/5454 https://doi.org/10.1016/S1385-299X(99)00061-6 |
Resumo: | The involvement of Ca2+-storage organelles in the modulation of synaptic transmission is well-established [M.K. Bennett, Ca2+ and the regulation of neurotransmitter secretion, Curr. Opin. Neurobiol. 7 (1997) 316-322 [1]; M.J. Berridge, Neuronal calcium signaling, Neuron 21 (1998) 13-26 [2]; Ph. Fossier, L. Tauc, G. Baux, Calcium transients and neurotransmitter release at an identified synapse, Trends Neurosci. 22 (1999) 161-166 [7]]. Various Ca2+ sequestering reservoirs (mitochondria, endoplasmic reticulum and synaptic vesicles) have been reported at the level of brain nerve terminals [P. Kostyuk, A. Verkhratsky, Calcium stores in neurons and glia, Neuroscience 63 (1994) 381-404 [18]; V. Mizuhira, H. Hasegawa, Microwave fixation and localization of calcium in synaptic terminals using X-ray microanalysis and electron energy loss spectroscopy imaging, Brain Res. Bull. 43 (1997) 53-58 [21]; A. Parducz, Y. Dunant, Transient increase of calcium in synaptic vesicles after stimulation, Neuroscience 52 (1993) 27-33 [23]; O.H. Petersen, Can Ca2+ be released from secretory granules or synaptic vesicles?, Trends Neurosci. 19 (1996) 411-413 [24]]. However, the knowledge of the specific contribution of each compartment for spatial and temporal control of the cytoplasmic Ca2+ concentration requires detailed characterization of the Ca2+ uptake and Ca2+ release mechanisms by the distinct intracellular stores. In this work, we described rapid and simple experimental procedures for analysis of a Ca2+/H+ antiport system that transport Ca2+ into synaptic vesicles at expenses of the energy of a [Delta]pH generated either by activity of the proton pump or by a pH jumping of the vesicles passively loaded with protons. This secondary active Ca2+ transport system requires high Ca2+ concentrations (>100 [mu]M) for activation, it is dependent on the chemical component ([Delta]pH) of the proton electrochemical gradient across the synaptic vesicle membrane and its selectivity is essentially determined by the size of the transported cation [P.P. Gonçalves, S.M. Meireles, C. Gravato, M.G.P. Vale, Ca2+-H+-Antiport activity in synaptic vesicles isolated from sheep brain cortex, Neurosci. Lett. 247 (1998) 87-90 [10]; P.P. Gonçalves, S.M. Meireles, P. Neves, M.G.P. Vale, Ionic selectivity of the Ca2+/H+ antiport in synaptic vesicles of sheep brain cortex, Mol. Brain Res. 67 (1999) 283-291 [11]; P.P. Gonçalves, S.M. Meireles, P. Neves, M.G.P. Vale, Synaptic vesicle Ca2+/H+ antiport: dependence on the proton electrochemical gradient, Mol. Brain Res. 71 (1999) 178-184 [12]]. The protocols described here allow to ascertain the characteristics of the Ca2+/H+ antiport in synaptic vesicles and, therefore, may be useful for clarification of the physiological role of synaptic vesicles in fast buffering of Ca2+ at various sites of the neurotransmission machinery.Theme: Excitable membranes and synaptic transmission.Topic: Presynaptic mechanisms. |
id |
RCAP_1e1891b594765233a605cf589437795c |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/5454 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Methods for analysis of Ca2+/H+ antiport activity in synaptic vesicles isolated from sheep brain cortexCa2+/H+ antiportCa2+ uptakeSynaptic vesicleBrain cortexThe involvement of Ca2+-storage organelles in the modulation of synaptic transmission is well-established [M.K. Bennett, Ca2+ and the regulation of neurotransmitter secretion, Curr. Opin. Neurobiol. 7 (1997) 316-322 [1]; M.J. Berridge, Neuronal calcium signaling, Neuron 21 (1998) 13-26 [2]; Ph. Fossier, L. Tauc, G. Baux, Calcium transients and neurotransmitter release at an identified synapse, Trends Neurosci. 22 (1999) 161-166 [7]]. Various Ca2+ sequestering reservoirs (mitochondria, endoplasmic reticulum and synaptic vesicles) have been reported at the level of brain nerve terminals [P. Kostyuk, A. Verkhratsky, Calcium stores in neurons and glia, Neuroscience 63 (1994) 381-404 [18]; V. Mizuhira, H. Hasegawa, Microwave fixation and localization of calcium in synaptic terminals using X-ray microanalysis and electron energy loss spectroscopy imaging, Brain Res. Bull. 43 (1997) 53-58 [21]; A. Parducz, Y. Dunant, Transient increase of calcium in synaptic vesicles after stimulation, Neuroscience 52 (1993) 27-33 [23]; O.H. Petersen, Can Ca2+ be released from secretory granules or synaptic vesicles?, Trends Neurosci. 19 (1996) 411-413 [24]]. However, the knowledge of the specific contribution of each compartment for spatial and temporal control of the cytoplasmic Ca2+ concentration requires detailed characterization of the Ca2+ uptake and Ca2+ release mechanisms by the distinct intracellular stores. In this work, we described rapid and simple experimental procedures for analysis of a Ca2+/H+ antiport system that transport Ca2+ into synaptic vesicles at expenses of the energy of a [Delta]pH generated either by activity of the proton pump or by a pH jumping of the vesicles passively loaded with protons. This secondary active Ca2+ transport system requires high Ca2+ concentrations (>100 [mu]M) for activation, it is dependent on the chemical component ([Delta]pH) of the proton electrochemical gradient across the synaptic vesicle membrane and its selectivity is essentially determined by the size of the transported cation [P.P. Gonçalves, S.M. Meireles, C. Gravato, M.G.P. Vale, Ca2+-H+-Antiport activity in synaptic vesicles isolated from sheep brain cortex, Neurosci. Lett. 247 (1998) 87-90 [10]; P.P. Gonçalves, S.M. Meireles, P. Neves, M.G.P. Vale, Ionic selectivity of the Ca2+/H+ antiport in synaptic vesicles of sheep brain cortex, Mol. Brain Res. 67 (1999) 283-291 [11]; P.P. Gonçalves, S.M. Meireles, P. Neves, M.G.P. Vale, Synaptic vesicle Ca2+/H+ antiport: dependence on the proton electrochemical gradient, Mol. Brain Res. 71 (1999) 178-184 [12]]. The protocols described here allow to ascertain the characteristics of the Ca2+/H+ antiport in synaptic vesicles and, therefore, may be useful for clarification of the physiological role of synaptic vesicles in fast buffering of Ca2+ at various sites of the neurotransmission machinery.Theme: Excitable membranes and synaptic transmission.Topic: Presynaptic mechanisms.http://www.sciencedirect.com/science/article/B6T3N-3YSXS1K-F/1/7b4fb1f233216c421e8ca8a6c164738b2000info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleaplication/PDFhttp://hdl.handle.net/10316/5454http://hdl.handle.net/10316/5454https://doi.org/10.1016/S1385-299X(99)00061-6engBrain Research Protocols. 5:1 (2000) 102-108Gonçalves, Paula P.Meireles, Sandra M.Neves, PauloVale, M. Graça P.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2020-11-06T16:59:58Zoai:estudogeral.uc.pt:10316/5454Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:55:30.554452Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Methods for analysis of Ca2+/H+ antiport activity in synaptic vesicles isolated from sheep brain cortex |
title |
Methods for analysis of Ca2+/H+ antiport activity in synaptic vesicles isolated from sheep brain cortex |
spellingShingle |
Methods for analysis of Ca2+/H+ antiport activity in synaptic vesicles isolated from sheep brain cortex Gonçalves, Paula P. Ca2+/H+ antiport Ca2+ uptake Synaptic vesicle Brain cortex |
title_short |
Methods for analysis of Ca2+/H+ antiport activity in synaptic vesicles isolated from sheep brain cortex |
title_full |
Methods for analysis of Ca2+/H+ antiport activity in synaptic vesicles isolated from sheep brain cortex |
title_fullStr |
Methods for analysis of Ca2+/H+ antiport activity in synaptic vesicles isolated from sheep brain cortex |
title_full_unstemmed |
Methods for analysis of Ca2+/H+ antiport activity in synaptic vesicles isolated from sheep brain cortex |
title_sort |
Methods for analysis of Ca2+/H+ antiport activity in synaptic vesicles isolated from sheep brain cortex |
author |
Gonçalves, Paula P. |
author_facet |
Gonçalves, Paula P. Meireles, Sandra M. Neves, Paulo Vale, M. Graça P. |
author_role |
author |
author2 |
Meireles, Sandra M. Neves, Paulo Vale, M. Graça P. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Gonçalves, Paula P. Meireles, Sandra M. Neves, Paulo Vale, M. Graça P. |
dc.subject.por.fl_str_mv |
Ca2+/H+ antiport Ca2+ uptake Synaptic vesicle Brain cortex |
topic |
Ca2+/H+ antiport Ca2+ uptake Synaptic vesicle Brain cortex |
description |
The involvement of Ca2+-storage organelles in the modulation of synaptic transmission is well-established [M.K. Bennett, Ca2+ and the regulation of neurotransmitter secretion, Curr. Opin. Neurobiol. 7 (1997) 316-322 [1]; M.J. Berridge, Neuronal calcium signaling, Neuron 21 (1998) 13-26 [2]; Ph. Fossier, L. Tauc, G. Baux, Calcium transients and neurotransmitter release at an identified synapse, Trends Neurosci. 22 (1999) 161-166 [7]]. Various Ca2+ sequestering reservoirs (mitochondria, endoplasmic reticulum and synaptic vesicles) have been reported at the level of brain nerve terminals [P. Kostyuk, A. Verkhratsky, Calcium stores in neurons and glia, Neuroscience 63 (1994) 381-404 [18]; V. Mizuhira, H. Hasegawa, Microwave fixation and localization of calcium in synaptic terminals using X-ray microanalysis and electron energy loss spectroscopy imaging, Brain Res. Bull. 43 (1997) 53-58 [21]; A. Parducz, Y. Dunant, Transient increase of calcium in synaptic vesicles after stimulation, Neuroscience 52 (1993) 27-33 [23]; O.H. Petersen, Can Ca2+ be released from secretory granules or synaptic vesicles?, Trends Neurosci. 19 (1996) 411-413 [24]]. However, the knowledge of the specific contribution of each compartment for spatial and temporal control of the cytoplasmic Ca2+ concentration requires detailed characterization of the Ca2+ uptake and Ca2+ release mechanisms by the distinct intracellular stores. In this work, we described rapid and simple experimental procedures for analysis of a Ca2+/H+ antiport system that transport Ca2+ into synaptic vesicles at expenses of the energy of a [Delta]pH generated either by activity of the proton pump or by a pH jumping of the vesicles passively loaded with protons. This secondary active Ca2+ transport system requires high Ca2+ concentrations (>100 [mu]M) for activation, it is dependent on the chemical component ([Delta]pH) of the proton electrochemical gradient across the synaptic vesicle membrane and its selectivity is essentially determined by the size of the transported cation [P.P. Gonçalves, S.M. Meireles, C. Gravato, M.G.P. Vale, Ca2+-H+-Antiport activity in synaptic vesicles isolated from sheep brain cortex, Neurosci. Lett. 247 (1998) 87-90 [10]; P.P. Gonçalves, S.M. Meireles, P. Neves, M.G.P. Vale, Ionic selectivity of the Ca2+/H+ antiport in synaptic vesicles of sheep brain cortex, Mol. Brain Res. 67 (1999) 283-291 [11]; P.P. Gonçalves, S.M. Meireles, P. Neves, M.G.P. Vale, Synaptic vesicle Ca2+/H+ antiport: dependence on the proton electrochemical gradient, Mol. Brain Res. 71 (1999) 178-184 [12]]. The protocols described here allow to ascertain the characteristics of the Ca2+/H+ antiport in synaptic vesicles and, therefore, may be useful for clarification of the physiological role of synaptic vesicles in fast buffering of Ca2+ at various sites of the neurotransmission machinery.Theme: Excitable membranes and synaptic transmission.Topic: Presynaptic mechanisms. |
publishDate |
2000 |
dc.date.none.fl_str_mv |
2000 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/5454 http://hdl.handle.net/10316/5454 https://doi.org/10.1016/S1385-299X(99)00061-6 |
url |
http://hdl.handle.net/10316/5454 https://doi.org/10.1016/S1385-299X(99)00061-6 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Brain Research Protocols. 5:1 (2000) 102-108 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
aplication/PDF |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133842180669440 |