Methods for analysis of Ca2+/H+ antiport activity in synaptic vesicles isolated from sheep brain cortex

Detalhes bibliográficos
Autor(a) principal: Gonçalves, Paula P.
Data de Publicação: 2000
Outros Autores: Meireles, Sandra M., Neves, Paulo, Vale, M. Graça P.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/5454
https://doi.org/10.1016/S1385-299X(99)00061-6
Resumo: The involvement of Ca2+-storage organelles in the modulation of synaptic transmission is well-established [M.K. Bennett, Ca2+ and the regulation of neurotransmitter secretion, Curr. Opin. Neurobiol. 7 (1997) 316-322 [1]; M.J. Berridge, Neuronal calcium signaling, Neuron 21 (1998) 13-26 [2]; Ph. Fossier, L. Tauc, G. Baux, Calcium transients and neurotransmitter release at an identified synapse, Trends Neurosci. 22 (1999) 161-166 [7]]. Various Ca2+ sequestering reservoirs (mitochondria, endoplasmic reticulum and synaptic vesicles) have been reported at the level of brain nerve terminals [P. Kostyuk, A. Verkhratsky, Calcium stores in neurons and glia, Neuroscience 63 (1994) 381-404 [18]; V. Mizuhira, H. Hasegawa, Microwave fixation and localization of calcium in synaptic terminals using X-ray microanalysis and electron energy loss spectroscopy imaging, Brain Res. Bull. 43 (1997) 53-58 [21]; A. Parducz, Y. Dunant, Transient increase of calcium in synaptic vesicles after stimulation, Neuroscience 52 (1993) 27-33 [23]; O.H. Petersen, Can Ca2+ be released from secretory granules or synaptic vesicles?, Trends Neurosci. 19 (1996) 411-413 [24]]. However, the knowledge of the specific contribution of each compartment for spatial and temporal control of the cytoplasmic Ca2+ concentration requires detailed characterization of the Ca2+ uptake and Ca2+ release mechanisms by the distinct intracellular stores. In this work, we described rapid and simple experimental procedures for analysis of a Ca2+/H+ antiport system that transport Ca2+ into synaptic vesicles at expenses of the energy of a [Delta]pH generated either by activity of the proton pump or by a pH jumping of the vesicles passively loaded with protons. This secondary active Ca2+ transport system requires high Ca2+ concentrations (>100 [mu]M) for activation, it is dependent on the chemical component ([Delta]pH) of the proton electrochemical gradient across the synaptic vesicle membrane and its selectivity is essentially determined by the size of the transported cation [P.P. Gonçalves, S.M. Meireles, C. Gravato, M.G.P. Vale, Ca2+-H+-Antiport activity in synaptic vesicles isolated from sheep brain cortex, Neurosci. Lett. 247 (1998) 87-90 [10]; P.P. Gonçalves, S.M. Meireles, P. Neves, M.G.P. Vale, Ionic selectivity of the Ca2+/H+ antiport in synaptic vesicles of sheep brain cortex, Mol. Brain Res. 67 (1999) 283-291 [11]; P.P. Gonçalves, S.M. Meireles, P. Neves, M.G.P. Vale, Synaptic vesicle Ca2+/H+ antiport: dependence on the proton electrochemical gradient, Mol. Brain Res. 71 (1999) 178-184 [12]]. The protocols described here allow to ascertain the characteristics of the Ca2+/H+ antiport in synaptic vesicles and, therefore, may be useful for clarification of the physiological role of synaptic vesicles in fast buffering of Ca2+ at various sites of the neurotransmission machinery.Theme: Excitable membranes and synaptic transmission.Topic: Presynaptic mechanisms.
id RCAP_1e1891b594765233a605cf589437795c
oai_identifier_str oai:estudogeral.uc.pt:10316/5454
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Methods for analysis of Ca2+/H+ antiport activity in synaptic vesicles isolated from sheep brain cortexCa2+/H+ antiportCa2+ uptakeSynaptic vesicleBrain cortexThe involvement of Ca2+-storage organelles in the modulation of synaptic transmission is well-established [M.K. Bennett, Ca2+ and the regulation of neurotransmitter secretion, Curr. Opin. Neurobiol. 7 (1997) 316-322 [1]; M.J. Berridge, Neuronal calcium signaling, Neuron 21 (1998) 13-26 [2]; Ph. Fossier, L. Tauc, G. Baux, Calcium transients and neurotransmitter release at an identified synapse, Trends Neurosci. 22 (1999) 161-166 [7]]. Various Ca2+ sequestering reservoirs (mitochondria, endoplasmic reticulum and synaptic vesicles) have been reported at the level of brain nerve terminals [P. Kostyuk, A. Verkhratsky, Calcium stores in neurons and glia, Neuroscience 63 (1994) 381-404 [18]; V. Mizuhira, H. Hasegawa, Microwave fixation and localization of calcium in synaptic terminals using X-ray microanalysis and electron energy loss spectroscopy imaging, Brain Res. Bull. 43 (1997) 53-58 [21]; A. Parducz, Y. Dunant, Transient increase of calcium in synaptic vesicles after stimulation, Neuroscience 52 (1993) 27-33 [23]; O.H. Petersen, Can Ca2+ be released from secretory granules or synaptic vesicles?, Trends Neurosci. 19 (1996) 411-413 [24]]. However, the knowledge of the specific contribution of each compartment for spatial and temporal control of the cytoplasmic Ca2+ concentration requires detailed characterization of the Ca2+ uptake and Ca2+ release mechanisms by the distinct intracellular stores. In this work, we described rapid and simple experimental procedures for analysis of a Ca2+/H+ antiport system that transport Ca2+ into synaptic vesicles at expenses of the energy of a [Delta]pH generated either by activity of the proton pump or by a pH jumping of the vesicles passively loaded with protons. This secondary active Ca2+ transport system requires high Ca2+ concentrations (>100 [mu]M) for activation, it is dependent on the chemical component ([Delta]pH) of the proton electrochemical gradient across the synaptic vesicle membrane and its selectivity is essentially determined by the size of the transported cation [P.P. Gonçalves, S.M. Meireles, C. Gravato, M.G.P. Vale, Ca2+-H+-Antiport activity in synaptic vesicles isolated from sheep brain cortex, Neurosci. Lett. 247 (1998) 87-90 [10]; P.P. Gonçalves, S.M. Meireles, P. Neves, M.G.P. Vale, Ionic selectivity of the Ca2+/H+ antiport in synaptic vesicles of sheep brain cortex, Mol. Brain Res. 67 (1999) 283-291 [11]; P.P. Gonçalves, S.M. Meireles, P. Neves, M.G.P. Vale, Synaptic vesicle Ca2+/H+ antiport: dependence on the proton electrochemical gradient, Mol. Brain Res. 71 (1999) 178-184 [12]]. The protocols described here allow to ascertain the characteristics of the Ca2+/H+ antiport in synaptic vesicles and, therefore, may be useful for clarification of the physiological role of synaptic vesicles in fast buffering of Ca2+ at various sites of the neurotransmission machinery.Theme: Excitable membranes and synaptic transmission.Topic: Presynaptic mechanisms.http://www.sciencedirect.com/science/article/B6T3N-3YSXS1K-F/1/7b4fb1f233216c421e8ca8a6c164738b2000info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleaplication/PDFhttp://hdl.handle.net/10316/5454http://hdl.handle.net/10316/5454https://doi.org/10.1016/S1385-299X(99)00061-6engBrain Research Protocols. 5:1 (2000) 102-108Gonçalves, Paula P.Meireles, Sandra M.Neves, PauloVale, M. Graça P.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2020-11-06T16:59:58Zoai:estudogeral.uc.pt:10316/5454Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:55:30.554452Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Methods for analysis of Ca2+/H+ antiport activity in synaptic vesicles isolated from sheep brain cortex
title Methods for analysis of Ca2+/H+ antiport activity in synaptic vesicles isolated from sheep brain cortex
spellingShingle Methods for analysis of Ca2+/H+ antiport activity in synaptic vesicles isolated from sheep brain cortex
Gonçalves, Paula P.
Ca2+/H+ antiport
Ca2+ uptake
Synaptic vesicle
Brain cortex
title_short Methods for analysis of Ca2+/H+ antiport activity in synaptic vesicles isolated from sheep brain cortex
title_full Methods for analysis of Ca2+/H+ antiport activity in synaptic vesicles isolated from sheep brain cortex
title_fullStr Methods for analysis of Ca2+/H+ antiport activity in synaptic vesicles isolated from sheep brain cortex
title_full_unstemmed Methods for analysis of Ca2+/H+ antiport activity in synaptic vesicles isolated from sheep brain cortex
title_sort Methods for analysis of Ca2+/H+ antiport activity in synaptic vesicles isolated from sheep brain cortex
author Gonçalves, Paula P.
author_facet Gonçalves, Paula P.
Meireles, Sandra M.
Neves, Paulo
Vale, M. Graça P.
author_role author
author2 Meireles, Sandra M.
Neves, Paulo
Vale, M. Graça P.
author2_role author
author
author
dc.contributor.author.fl_str_mv Gonçalves, Paula P.
Meireles, Sandra M.
Neves, Paulo
Vale, M. Graça P.
dc.subject.por.fl_str_mv Ca2+/H+ antiport
Ca2+ uptake
Synaptic vesicle
Brain cortex
topic Ca2+/H+ antiport
Ca2+ uptake
Synaptic vesicle
Brain cortex
description The involvement of Ca2+-storage organelles in the modulation of synaptic transmission is well-established [M.K. Bennett, Ca2+ and the regulation of neurotransmitter secretion, Curr. Opin. Neurobiol. 7 (1997) 316-322 [1]; M.J. Berridge, Neuronal calcium signaling, Neuron 21 (1998) 13-26 [2]; Ph. Fossier, L. Tauc, G. Baux, Calcium transients and neurotransmitter release at an identified synapse, Trends Neurosci. 22 (1999) 161-166 [7]]. Various Ca2+ sequestering reservoirs (mitochondria, endoplasmic reticulum and synaptic vesicles) have been reported at the level of brain nerve terminals [P. Kostyuk, A. Verkhratsky, Calcium stores in neurons and glia, Neuroscience 63 (1994) 381-404 [18]; V. Mizuhira, H. Hasegawa, Microwave fixation and localization of calcium in synaptic terminals using X-ray microanalysis and electron energy loss spectroscopy imaging, Brain Res. Bull. 43 (1997) 53-58 [21]; A. Parducz, Y. Dunant, Transient increase of calcium in synaptic vesicles after stimulation, Neuroscience 52 (1993) 27-33 [23]; O.H. Petersen, Can Ca2+ be released from secretory granules or synaptic vesicles?, Trends Neurosci. 19 (1996) 411-413 [24]]. However, the knowledge of the specific contribution of each compartment for spatial and temporal control of the cytoplasmic Ca2+ concentration requires detailed characterization of the Ca2+ uptake and Ca2+ release mechanisms by the distinct intracellular stores. In this work, we described rapid and simple experimental procedures for analysis of a Ca2+/H+ antiport system that transport Ca2+ into synaptic vesicles at expenses of the energy of a [Delta]pH generated either by activity of the proton pump or by a pH jumping of the vesicles passively loaded with protons. This secondary active Ca2+ transport system requires high Ca2+ concentrations (>100 [mu]M) for activation, it is dependent on the chemical component ([Delta]pH) of the proton electrochemical gradient across the synaptic vesicle membrane and its selectivity is essentially determined by the size of the transported cation [P.P. Gonçalves, S.M. Meireles, C. Gravato, M.G.P. Vale, Ca2+-H+-Antiport activity in synaptic vesicles isolated from sheep brain cortex, Neurosci. Lett. 247 (1998) 87-90 [10]; P.P. Gonçalves, S.M. Meireles, P. Neves, M.G.P. Vale, Ionic selectivity of the Ca2+/H+ antiport in synaptic vesicles of sheep brain cortex, Mol. Brain Res. 67 (1999) 283-291 [11]; P.P. Gonçalves, S.M. Meireles, P. Neves, M.G.P. Vale, Synaptic vesicle Ca2+/H+ antiport: dependence on the proton electrochemical gradient, Mol. Brain Res. 71 (1999) 178-184 [12]]. The protocols described here allow to ascertain the characteristics of the Ca2+/H+ antiport in synaptic vesicles and, therefore, may be useful for clarification of the physiological role of synaptic vesicles in fast buffering of Ca2+ at various sites of the neurotransmission machinery.Theme: Excitable membranes and synaptic transmission.Topic: Presynaptic mechanisms.
publishDate 2000
dc.date.none.fl_str_mv 2000
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/5454
http://hdl.handle.net/10316/5454
https://doi.org/10.1016/S1385-299X(99)00061-6
url http://hdl.handle.net/10316/5454
https://doi.org/10.1016/S1385-299X(99)00061-6
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Brain Research Protocols. 5:1 (2000) 102-108
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv aplication/PDF
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133842180669440