Numerical simulation of GFRP-reinforced glass structural elements under monotonic loading
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/1822/78070 |
Resumo: | Several reinforcing strategies have recently been developed to overcome glass brittleness and numerical simulations are essential to investigate the structural behaviour of such hybrid systems. Based on previous experimental results from monotonic quasi-static tests, this paper presents a numerical study about the flexural behaviour of glass beams reinforced with glass fibre reinforced polymer (GFRP) laminates bonded with two different adhesives: polyurethane and epoxy. The main objective of this study is to evaluate the efficiency of different constitutive models to simulate the non-linear behaviour of glass, considering the following factors: initial stiffness, cracking load, post-cracking stiffness, crack pattern and progressive failure. The glass is simulated using smeared crack (SCM) and damaged plasticity (DPM) models with static and dynamic numerical approaches. Particular attention is paid to the influence of the several parameters that influence the structural behaviour of glass (e.g. threshold angle), as well as to the interfaces between all the materials involved (e.g. thickness of the adhesive layer). In relation to static numerical approaches, dynamic numerical approaches require more computational effort and their dynamic effects may influence the structural responses obtained; however, they also show to be able to capture all the stages of cracking in greater detail, because stability during cracking formation is guaranteed even at smaller loading stages. Since DPM models do not allow considering a maximum absolute damage factor of 1.0, the smeared crack models simulate better the non-linear behaviour of glass. |
id |
RCAP_1ec1e8341e385037b967170f4715747d |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/78070 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Numerical simulation of GFRP-reinforced glass structural elements under monotonic loadingGlass-GFRP composite beamsNumerical analysisSmeared crack modelDamaged plasticity modelDynamic effectsStructural behaviourEngenharia e Tecnologia::Engenharia CivilScience & TechnologyIndústria, inovação e infraestruturasCidades e comunidades sustentáveisSeveral reinforcing strategies have recently been developed to overcome glass brittleness and numerical simulations are essential to investigate the structural behaviour of such hybrid systems. Based on previous experimental results from monotonic quasi-static tests, this paper presents a numerical study about the flexural behaviour of glass beams reinforced with glass fibre reinforced polymer (GFRP) laminates bonded with two different adhesives: polyurethane and epoxy. The main objective of this study is to evaluate the efficiency of different constitutive models to simulate the non-linear behaviour of glass, considering the following factors: initial stiffness, cracking load, post-cracking stiffness, crack pattern and progressive failure. The glass is simulated using smeared crack (SCM) and damaged plasticity (DPM) models with static and dynamic numerical approaches. Particular attention is paid to the influence of the several parameters that influence the structural behaviour of glass (e.g. threshold angle), as well as to the interfaces between all the materials involved (e.g. thickness of the adhesive layer). In relation to static numerical approaches, dynamic numerical approaches require more computational effort and their dynamic effects may influence the structural responses obtained; however, they also show to be able to capture all the stages of cracking in greater detail, because stability during cracking formation is guaranteed even at smaller loading stages. Since DPM models do not allow considering a maximum absolute damage factor of 1.0, the smeared crack models simulate better the non-linear behaviour of glass.The first and third authors wish also to acknowledge the grants SFRH/BD/122428/2016 and SFRH/BSAB/150266/2019, respectively, provided by Fundação para a Ciência e a Tecnologia, IP (FCT), financed by European Social Fund and by national funds through the FCT/MCTES.ElsevierUniversidade do MinhoRocha, JorgePereira, EduardoSena-Cruz, JoséValarinho, LuísCorreia, João Ramôa20212021-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/78070engRocha, J., Pereira, E., Sena-Cruz, J., Valarinho, L., & Correia, J. R. (2021). Numerical simulation of GFRP-reinforced glass structural elements under monotonic loading. Engineering Structures, 234, 111968. doi: https://doi.org/10.1016/j.engstruct.2021.1119680141-029610.1016/j.engstruct.2021.111968111968https://www.sciencedirect.com/science/article/pii/S0141029621001188info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-13T01:26:41Zoai:repositorium.sdum.uminho.pt:1822/78070Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:47:06.752659Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Numerical simulation of GFRP-reinforced glass structural elements under monotonic loading |
title |
Numerical simulation of GFRP-reinforced glass structural elements under monotonic loading |
spellingShingle |
Numerical simulation of GFRP-reinforced glass structural elements under monotonic loading Rocha, Jorge Glass-GFRP composite beams Numerical analysis Smeared crack model Damaged plasticity model Dynamic effects Structural behaviour Engenharia e Tecnologia::Engenharia Civil Science & Technology Indústria, inovação e infraestruturas Cidades e comunidades sustentáveis |
title_short |
Numerical simulation of GFRP-reinforced glass structural elements under monotonic loading |
title_full |
Numerical simulation of GFRP-reinforced glass structural elements under monotonic loading |
title_fullStr |
Numerical simulation of GFRP-reinforced glass structural elements under monotonic loading |
title_full_unstemmed |
Numerical simulation of GFRP-reinforced glass structural elements under monotonic loading |
title_sort |
Numerical simulation of GFRP-reinforced glass structural elements under monotonic loading |
author |
Rocha, Jorge |
author_facet |
Rocha, Jorge Pereira, Eduardo Sena-Cruz, José Valarinho, Luís Correia, João Ramôa |
author_role |
author |
author2 |
Pereira, Eduardo Sena-Cruz, José Valarinho, Luís Correia, João Ramôa |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Rocha, Jorge Pereira, Eduardo Sena-Cruz, José Valarinho, Luís Correia, João Ramôa |
dc.subject.por.fl_str_mv |
Glass-GFRP composite beams Numerical analysis Smeared crack model Damaged plasticity model Dynamic effects Structural behaviour Engenharia e Tecnologia::Engenharia Civil Science & Technology Indústria, inovação e infraestruturas Cidades e comunidades sustentáveis |
topic |
Glass-GFRP composite beams Numerical analysis Smeared crack model Damaged plasticity model Dynamic effects Structural behaviour Engenharia e Tecnologia::Engenharia Civil Science & Technology Indústria, inovação e infraestruturas Cidades e comunidades sustentáveis |
description |
Several reinforcing strategies have recently been developed to overcome glass brittleness and numerical simulations are essential to investigate the structural behaviour of such hybrid systems. Based on previous experimental results from monotonic quasi-static tests, this paper presents a numerical study about the flexural behaviour of glass beams reinforced with glass fibre reinforced polymer (GFRP) laminates bonded with two different adhesives: polyurethane and epoxy. The main objective of this study is to evaluate the efficiency of different constitutive models to simulate the non-linear behaviour of glass, considering the following factors: initial stiffness, cracking load, post-cracking stiffness, crack pattern and progressive failure. The glass is simulated using smeared crack (SCM) and damaged plasticity (DPM) models with static and dynamic numerical approaches. Particular attention is paid to the influence of the several parameters that influence the structural behaviour of glass (e.g. threshold angle), as well as to the interfaces between all the materials involved (e.g. thickness of the adhesive layer). In relation to static numerical approaches, dynamic numerical approaches require more computational effort and their dynamic effects may influence the structural responses obtained; however, they also show to be able to capture all the stages of cracking in greater detail, because stability during cracking formation is guaranteed even at smaller loading stages. Since DPM models do not allow considering a maximum absolute damage factor of 1.0, the smeared crack models simulate better the non-linear behaviour of glass. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 2021-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/78070 |
url |
https://hdl.handle.net/1822/78070 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Rocha, J., Pereira, E., Sena-Cruz, J., Valarinho, L., & Correia, J. R. (2021). Numerical simulation of GFRP-reinforced glass structural elements under monotonic loading. Engineering Structures, 234, 111968. doi: https://doi.org/10.1016/j.engstruct.2021.111968 0141-0296 10.1016/j.engstruct.2021.111968 111968 https://www.sciencedirect.com/science/article/pii/S0141029621001188 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133043413221376 |