Efficient cloud-based cellular planning algorithms for 3G and 4G networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/22212 |
Resumo: | In mobile network deployments of growing size, the optimum and fast planning of radio resources are a key task. Cloud services enable efficient and scalable implementation of procedures and algorithms. In this dissertation, a cloud-based planning system for 3G and 4G networks is presented, using Amazon Web Services (AWS) for cloud implementation. It extracts configuration and performance data from the network, enabling to accurately estimate cells coverage, identify neighbouring cells and optimally plan Scrambling Codes (SC) in an UMTS network and Physical Cell Identity (PCI) in LTE networks. This system is integrated in a Software-as-a-Service monitoring and planning tool Metric, owned by Multivision, allowing for an easy and efficient allocation of the network resources. The system operation is demonstrated in a small canonical scenario for SCs, a small realistic scenario of PCIs cluster planning, taking less than 0,6 seconds to perform the planning. For a realistic 3G scenario with 12 484 unplanned cells, the planning of SCs is efficiently achieved, taking less than 8 seconds, and guaranteeing no collisions between first order neighbouring cells. |
id |
RCAP_1ecba7290baafe9dc1bd8e172fa08aa9 |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/22212 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Efficient cloud-based cellular planning algorithms for 3G and 4G networksCloudSONSCPCIMetricResourcesUMTSLTEIn mobile network deployments of growing size, the optimum and fast planning of radio resources are a key task. Cloud services enable efficient and scalable implementation of procedures and algorithms. In this dissertation, a cloud-based planning system for 3G and 4G networks is presented, using Amazon Web Services (AWS) for cloud implementation. It extracts configuration and performance data from the network, enabling to accurately estimate cells coverage, identify neighbouring cells and optimally plan Scrambling Codes (SC) in an UMTS network and Physical Cell Identity (PCI) in LTE networks. This system is integrated in a Software-as-a-Service monitoring and planning tool Metric, owned by Multivision, allowing for an easy and efficient allocation of the network resources. The system operation is demonstrated in a small canonical scenario for SCs, a small realistic scenario of PCIs cluster planning, taking less than 0,6 seconds to perform the planning. For a realistic 3G scenario with 12 484 unplanned cells, the planning of SCs is efficiently achieved, taking less than 8 seconds, and guaranteeing no collisions between first order neighbouring cells.Nas implementações de redes móveis grande escala, o planeamento otimizado e rápido dos recursos de rádio é uma tarefa fundamental. Os serviços em cloud permitem a implementação eficiente e escalável de padrões e algoritmos. Nesta dissertação, é apresentado um sistema de planeamento baseado em cloud para redes 3G e 4G, fazendo recurso à Amazon Web Services (AWS) para implementação em cloud. Este sistema extrai dados de configuração e desempenho da rede, o que permite estimar com precisão a cobertura das células, identificar células vizinhas e planear de forma eficiente os Scrambling Codes (SC) em redes UMTS e Physical Cell Identity (PCI) em redes LTE. Este sistema está integrado no Metric, uma ferramenta de planeamento e monitorização de Software-as-a-Service, propriedade da Multivision, permitindo uma alocação fácil e eficiente dos recursos da rede. A operação do sistema é demonstrada num pequeno cenário canónico para SCs, um pequeno cenário realista de um cluster de células pertencentes a uma rede LTE, onde se pretende planear os seus PCIs. O algoritmo executa um planeamento ótimo deste cluster em menos de 0,6 segundos. Para um cenário 3G realista com 12 484 células não planeadas, a alocação dos SCs é realizada com eficiência, levando menos de 8 segundos e garantindo que não existem colisões entre as células vizinhas de primeira ordem.2021-02-25T12:24:51Z2019-12-16T00:00:00Z2019-12-162019-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10071/22212TID:202646777engCortesão, Rodrigo Ramalho de Lobatoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-07-07T02:31:19Zoai:repositorio.iscte-iul.pt:10071/22212Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-07-07T02:31:19Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Efficient cloud-based cellular planning algorithms for 3G and 4G networks |
title |
Efficient cloud-based cellular planning algorithms for 3G and 4G networks |
spellingShingle |
Efficient cloud-based cellular planning algorithms for 3G and 4G networks Cortesão, Rodrigo Ramalho de Lobato Cloud SON SC PCI Metric Resources UMTS LTE |
title_short |
Efficient cloud-based cellular planning algorithms for 3G and 4G networks |
title_full |
Efficient cloud-based cellular planning algorithms for 3G and 4G networks |
title_fullStr |
Efficient cloud-based cellular planning algorithms for 3G and 4G networks |
title_full_unstemmed |
Efficient cloud-based cellular planning algorithms for 3G and 4G networks |
title_sort |
Efficient cloud-based cellular planning algorithms for 3G and 4G networks |
author |
Cortesão, Rodrigo Ramalho de Lobato |
author_facet |
Cortesão, Rodrigo Ramalho de Lobato |
author_role |
author |
dc.contributor.author.fl_str_mv |
Cortesão, Rodrigo Ramalho de Lobato |
dc.subject.por.fl_str_mv |
Cloud SON SC PCI Metric Resources UMTS LTE |
topic |
Cloud SON SC PCI Metric Resources UMTS LTE |
description |
In mobile network deployments of growing size, the optimum and fast planning of radio resources are a key task. Cloud services enable efficient and scalable implementation of procedures and algorithms. In this dissertation, a cloud-based planning system for 3G and 4G networks is presented, using Amazon Web Services (AWS) for cloud implementation. It extracts configuration and performance data from the network, enabling to accurately estimate cells coverage, identify neighbouring cells and optimally plan Scrambling Codes (SC) in an UMTS network and Physical Cell Identity (PCI) in LTE networks. This system is integrated in a Software-as-a-Service monitoring and planning tool Metric, owned by Multivision, allowing for an easy and efficient allocation of the network resources. The system operation is demonstrated in a small canonical scenario for SCs, a small realistic scenario of PCIs cluster planning, taking less than 0,6 seconds to perform the planning. For a realistic 3G scenario with 12 484 unplanned cells, the planning of SCs is efficiently achieved, taking less than 8 seconds, and guaranteeing no collisions between first order neighbouring cells. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-12-16T00:00:00Z 2019-12-16 2019-10 2021-02-25T12:24:51Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/22212 TID:202646777 |
url |
http://hdl.handle.net/10071/22212 |
identifier_str_mv |
TID:202646777 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817546256517431296 |