Biosensor for direct bioelectrocatalysis detection of nitric oxide using nitric oxide reductase incorporated in carboxylated single-walled carbon nanotubes/lipidic 3 bilayer nanocomposite

Detalhes bibliográficos
Autor(a) principal: Gomes, Filipa O.
Data de Publicação: 2019
Outros Autores: Maia, Luísa B., Loureiro, Joana A., Pereira, Maria Carmo, Delerue-Matos, Cristina, Moura, Isabel, Moura, José J.G., Morais, Simone
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.22/16095
Resumo: An enzymatic biosensor based on nitric oxide reductase (NOR; purified from Marinobacter hydrocarbonoclasticus) was developed for nitric oxide (NO) detection. The biosensor was prepared by deposition onto a pyrolytic graphite electrode (PGE) of a nanocomposite constituted by carboxylated single-walled carbon nanotubes (SWCNTs), a lipidic bilayer [1,2-di-(9Z-octadecenoyl)-sn-glycero-3-phosphoethanolamine (DOPE), 1,2-di-(9Z-octadecenoyl)-3-trimethylammonium-propane (DOTAP), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-polyethylene glycol (DSPE-PEG)] and NOR. NOR direct electron transfer and NO bioelectrocatalysis were characterized by several electrochemical techniques. The biosensor development was also followed by scanning electron microscopy and Fourier transform infrared spectroscopy. Improved enzyme stability and electron transfer (1.96 × 10-4 cm.s-1 apparent rate constant) was obtained with the optimum SWCNTs/(DOPE:DOTAP:DSPE-PEG)/NOR) ratio of 4/2.5/4 (v/v/v), which biomimicked the NOR environment. The PGE/[SWCNTs/(DOPE:DOTAP:DSPE-PEG)/NOR] biosensor exhibited a low Michaelis-Menten constant (4.3 μM), wide linear range (0.44-9.09 μM), low detection limit (0.13 μM), high repeatability (4.1% RSD), reproducibility (7.0% RSD), and stability (ca. 5 weeks). Selectivity tests towards L-arginine, ascorbic acid, sodium nitrate, sodium nitrite and glucose showed that these compounds did not significantly interfere in NO biosensing (91.0 ± 9.3%-98.4 ± 5.3% recoveries). The proposed biosensor, by incorporating the benefits of biomimetic features of the phospholipid bilayer with SWCNT's inherent properties and NOR bioelectrocatalytic activity and selectivity, is a promising tool for NO.
id RCAP_1ef687bdfcb1ea1f63860c526ea7bccf
oai_identifier_str oai:recipp.ipp.pt:10400.22/16095
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Biosensor for direct bioelectrocatalysis detection of nitric oxide using nitric oxide reductase incorporated in carboxylated single-walled carbon nanotubes/lipidic 3 bilayer nanocompositeBiosensing TechniquesEnzymesLimit of DetectionLipid BilayersMarinobacterNanotubesNitric OxideOxidoreductasesDirect electron transferEnzymatic biosensorNitric oxide reductaseAn enzymatic biosensor based on nitric oxide reductase (NOR; purified from Marinobacter hydrocarbonoclasticus) was developed for nitric oxide (NO) detection. The biosensor was prepared by deposition onto a pyrolytic graphite electrode (PGE) of a nanocomposite constituted by carboxylated single-walled carbon nanotubes (SWCNTs), a lipidic bilayer [1,2-di-(9Z-octadecenoyl)-sn-glycero-3-phosphoethanolamine (DOPE), 1,2-di-(9Z-octadecenoyl)-3-trimethylammonium-propane (DOTAP), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-polyethylene glycol (DSPE-PEG)] and NOR. NOR direct electron transfer and NO bioelectrocatalysis were characterized by several electrochemical techniques. The biosensor development was also followed by scanning electron microscopy and Fourier transform infrared spectroscopy. Improved enzyme stability and electron transfer (1.96 × 10-4 cm.s-1 apparent rate constant) was obtained with the optimum SWCNTs/(DOPE:DOTAP:DSPE-PEG)/NOR) ratio of 4/2.5/4 (v/v/v), which biomimicked the NOR environment. The PGE/[SWCNTs/(DOPE:DOTAP:DSPE-PEG)/NOR] biosensor exhibited a low Michaelis-Menten constant (4.3 μM), wide linear range (0.44-9.09 μM), low detection limit (0.13 μM), high repeatability (4.1% RSD), reproducibility (7.0% RSD), and stability (ca. 5 weeks). Selectivity tests towards L-arginine, ascorbic acid, sodium nitrate, sodium nitrite and glucose showed that these compounds did not significantly interfere in NO biosensing (91.0 ± 9.3%-98.4 ± 5.3% recoveries). The proposed biosensor, by incorporating the benefits of biomimetic features of the phospholipid bilayer with SWCNT's inherent properties and NOR bioelectrocatalytic activity and selectivity, is a promising tool for NO.FG thanks to Fundacão para a Ciência e a Tecnologia, MCTES (FCT/MCTES) for the fellowship grant SFRH/BD/52502/2014, which is financed by national funds and co-financed by FSE. LBM thanks to FCT/MCTES for the CEEC-Individual 2017 Program Contract. This work was supported by the PTDC/BB-BQB/0129/2014 project (FCT/MCTES), by FCT/MEC with national funds and co-funded by FEDER, and also by the Associate Laboratory Research Unit for Green Chemistry - Technologies and Processes Clean – LAQV, financed by national funds from FCT/MCTES (UID/QUI/50006/2019). The financial support from the European Union (FEDER funds through COMPETE) and National Funds (Fundação para a Ciência e Tecnologia-FCT) through project PTDC/ASP-PES/29547/2017, by FCT/MEC with national funds and co-funded by FEDER, is also acknowledged. J.A. Loureiro post-doc grant was supported by NORTE-01-0145-FEDER-000005 – LEPABE-2 ECO-INNOVATION, from North Portugal Regional Operational Program (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (ERDF).ElsevierRepositório Científico do Instituto Politécnico do PortoGomes, Filipa O.Maia, Luísa B.Loureiro, Joana A.Pereira, Maria CarmoDelerue-Matos, CristinaMoura, IsabelMoura, José J.G.Morais, Simone2020-07-10T13:44:27Z2019-062019-06-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/16095eng10.1016/j.bioelechem.2019.01.010info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T13:02:02Zoai:recipp.ipp.pt:10400.22/16095Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:35:44.868607Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Biosensor for direct bioelectrocatalysis detection of nitric oxide using nitric oxide reductase incorporated in carboxylated single-walled carbon nanotubes/lipidic 3 bilayer nanocomposite
title Biosensor for direct bioelectrocatalysis detection of nitric oxide using nitric oxide reductase incorporated in carboxylated single-walled carbon nanotubes/lipidic 3 bilayer nanocomposite
spellingShingle Biosensor for direct bioelectrocatalysis detection of nitric oxide using nitric oxide reductase incorporated in carboxylated single-walled carbon nanotubes/lipidic 3 bilayer nanocomposite
Gomes, Filipa O.
Biosensing Techniques
Enzymes
Limit of Detection
Lipid Bilayers
Marinobacter
Nanotubes
Nitric Oxide
Oxidoreductases
Direct electron transfer
Enzymatic biosensor
Nitric oxide reductase
title_short Biosensor for direct bioelectrocatalysis detection of nitric oxide using nitric oxide reductase incorporated in carboxylated single-walled carbon nanotubes/lipidic 3 bilayer nanocomposite
title_full Biosensor for direct bioelectrocatalysis detection of nitric oxide using nitric oxide reductase incorporated in carboxylated single-walled carbon nanotubes/lipidic 3 bilayer nanocomposite
title_fullStr Biosensor for direct bioelectrocatalysis detection of nitric oxide using nitric oxide reductase incorporated in carboxylated single-walled carbon nanotubes/lipidic 3 bilayer nanocomposite
title_full_unstemmed Biosensor for direct bioelectrocatalysis detection of nitric oxide using nitric oxide reductase incorporated in carboxylated single-walled carbon nanotubes/lipidic 3 bilayer nanocomposite
title_sort Biosensor for direct bioelectrocatalysis detection of nitric oxide using nitric oxide reductase incorporated in carboxylated single-walled carbon nanotubes/lipidic 3 bilayer nanocomposite
author Gomes, Filipa O.
author_facet Gomes, Filipa O.
Maia, Luísa B.
Loureiro, Joana A.
Pereira, Maria Carmo
Delerue-Matos, Cristina
Moura, Isabel
Moura, José J.G.
Morais, Simone
author_role author
author2 Maia, Luísa B.
Loureiro, Joana A.
Pereira, Maria Carmo
Delerue-Matos, Cristina
Moura, Isabel
Moura, José J.G.
Morais, Simone
author2_role author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Repositório Científico do Instituto Politécnico do Porto
dc.contributor.author.fl_str_mv Gomes, Filipa O.
Maia, Luísa B.
Loureiro, Joana A.
Pereira, Maria Carmo
Delerue-Matos, Cristina
Moura, Isabel
Moura, José J.G.
Morais, Simone
dc.subject.por.fl_str_mv Biosensing Techniques
Enzymes
Limit of Detection
Lipid Bilayers
Marinobacter
Nanotubes
Nitric Oxide
Oxidoreductases
Direct electron transfer
Enzymatic biosensor
Nitric oxide reductase
topic Biosensing Techniques
Enzymes
Limit of Detection
Lipid Bilayers
Marinobacter
Nanotubes
Nitric Oxide
Oxidoreductases
Direct electron transfer
Enzymatic biosensor
Nitric oxide reductase
description An enzymatic biosensor based on nitric oxide reductase (NOR; purified from Marinobacter hydrocarbonoclasticus) was developed for nitric oxide (NO) detection. The biosensor was prepared by deposition onto a pyrolytic graphite electrode (PGE) of a nanocomposite constituted by carboxylated single-walled carbon nanotubes (SWCNTs), a lipidic bilayer [1,2-di-(9Z-octadecenoyl)-sn-glycero-3-phosphoethanolamine (DOPE), 1,2-di-(9Z-octadecenoyl)-3-trimethylammonium-propane (DOTAP), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-polyethylene glycol (DSPE-PEG)] and NOR. NOR direct electron transfer and NO bioelectrocatalysis were characterized by several electrochemical techniques. The biosensor development was also followed by scanning electron microscopy and Fourier transform infrared spectroscopy. Improved enzyme stability and electron transfer (1.96 × 10-4 cm.s-1 apparent rate constant) was obtained with the optimum SWCNTs/(DOPE:DOTAP:DSPE-PEG)/NOR) ratio of 4/2.5/4 (v/v/v), which biomimicked the NOR environment. The PGE/[SWCNTs/(DOPE:DOTAP:DSPE-PEG)/NOR] biosensor exhibited a low Michaelis-Menten constant (4.3 μM), wide linear range (0.44-9.09 μM), low detection limit (0.13 μM), high repeatability (4.1% RSD), reproducibility (7.0% RSD), and stability (ca. 5 weeks). Selectivity tests towards L-arginine, ascorbic acid, sodium nitrate, sodium nitrite and glucose showed that these compounds did not significantly interfere in NO biosensing (91.0 ± 9.3%-98.4 ± 5.3% recoveries). The proposed biosensor, by incorporating the benefits of biomimetic features of the phospholipid bilayer with SWCNT's inherent properties and NOR bioelectrocatalytic activity and selectivity, is a promising tool for NO.
publishDate 2019
dc.date.none.fl_str_mv 2019-06
2019-06-01T00:00:00Z
2020-07-10T13:44:27Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.22/16095
url http://hdl.handle.net/10400.22/16095
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1016/j.bioelechem.2019.01.010
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1817550874510098432