Detection of outliers for a pharmaceutical distribution company in Portugal | Deteção de outliers numa empresa de distribuição farmacêutica em Portugal
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
DOI: | 10.1109/CISTI.2016.7521396 |
Texto Completo: | http://hdl.handle.net/11328/1749 https://doi.org/10.1109/CISTI.2016.7521396 |
Resumo: | For pharmaceutical distribution companies it is essential to obtain good estimates of medicine needs, due to the short shelf life of many medicines and the need to control stock levels, so as to avoid excessive inventory costs while guaranteeing customer demand satisfaction, and thus decreasing the possibility of loss of customers due to stock outages. In this paper we explore the use of the time series data mining technique for the sales prediction of individual products of a pharmaceutical distribution company in Portugal. Through data mining techniques, the historical data of product sales are analyzed to detect patterns and make predictions based on the experience contained in the data. The results obtained with the technique as well as with the proposed method suggest that the performed modelling may be considered appropriate for the short term product sales prediction. |
id |
RCAP_1f5c7b7fe00321f970e81d2f884e3c19 |
---|---|
oai_identifier_str |
oai:repositorio.upt.pt:11328/1749 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Detection of outliers for a pharmaceutical distribution company in Portugal | Deteção de outliers numa empresa de distribuição farmacêutica em PortugalMedicinesStock unavailabilityData miningTime seriesSales predictionFor pharmaceutical distribution companies it is essential to obtain good estimates of medicine needs, due to the short shelf life of many medicines and the need to control stock levels, so as to avoid excessive inventory costs while guaranteeing customer demand satisfaction, and thus decreasing the possibility of loss of customers due to stock outages. In this paper we explore the use of the time series data mining technique for the sales prediction of individual products of a pharmaceutical distribution company in Portugal. Through data mining techniques, the historical data of product sales are analyzed to detect patterns and make predictions based on the experience contained in the data. The results obtained with the technique as well as with the proposed method suggest that the performed modelling may be considered appropriate for the short term product sales prediction.2017-02-10T18:06:01Z2017-02-102016-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/11328/1749http://hdl.handle.net/11328/1749https://doi.org/10.1109/CISTI.2016.7521396porhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessRibeiro, AugustoDurão, NatérciaSeruca, Isabelreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-07-04T02:26:16Zoai:repositorio.upt.pt:11328/1749Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-07-04T02:26:16Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Detection of outliers for a pharmaceutical distribution company in Portugal | Deteção de outliers numa empresa de distribuição farmacêutica em Portugal |
title |
Detection of outliers for a pharmaceutical distribution company in Portugal | Deteção de outliers numa empresa de distribuição farmacêutica em Portugal |
spellingShingle |
Detection of outliers for a pharmaceutical distribution company in Portugal | Deteção de outliers numa empresa de distribuição farmacêutica em Portugal Detection of outliers for a pharmaceutical distribution company in Portugal | Deteção de outliers numa empresa de distribuição farmacêutica em Portugal Ribeiro, Augusto Medicines Stock unavailability Data mining Time series Sales prediction Ribeiro, Augusto Medicines Stock unavailability Data mining Time series Sales prediction |
title_short |
Detection of outliers for a pharmaceutical distribution company in Portugal | Deteção de outliers numa empresa de distribuição farmacêutica em Portugal |
title_full |
Detection of outliers for a pharmaceutical distribution company in Portugal | Deteção de outliers numa empresa de distribuição farmacêutica em Portugal |
title_fullStr |
Detection of outliers for a pharmaceutical distribution company in Portugal | Deteção de outliers numa empresa de distribuição farmacêutica em Portugal Detection of outliers for a pharmaceutical distribution company in Portugal | Deteção de outliers numa empresa de distribuição farmacêutica em Portugal |
title_full_unstemmed |
Detection of outliers for a pharmaceutical distribution company in Portugal | Deteção de outliers numa empresa de distribuição farmacêutica em Portugal Detection of outliers for a pharmaceutical distribution company in Portugal | Deteção de outliers numa empresa de distribuição farmacêutica em Portugal |
title_sort |
Detection of outliers for a pharmaceutical distribution company in Portugal | Deteção de outliers numa empresa de distribuição farmacêutica em Portugal |
author |
Ribeiro, Augusto |
author_facet |
Ribeiro, Augusto Ribeiro, Augusto Durão, Natércia Seruca, Isabel Durão, Natércia Seruca, Isabel |
author_role |
author |
author2 |
Durão, Natércia Seruca, Isabel |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Ribeiro, Augusto Durão, Natércia Seruca, Isabel |
dc.subject.por.fl_str_mv |
Medicines Stock unavailability Data mining Time series Sales prediction |
topic |
Medicines Stock unavailability Data mining Time series Sales prediction |
description |
For pharmaceutical distribution companies it is essential to obtain good estimates of medicine needs, due to the short shelf life of many medicines and the need to control stock levels, so as to avoid excessive inventory costs while guaranteeing customer demand satisfaction, and thus decreasing the possibility of loss of customers due to stock outages. In this paper we explore the use of the time series data mining technique for the sales prediction of individual products of a pharmaceutical distribution company in Portugal. Through data mining techniques, the historical data of product sales are analyzed to detect patterns and make predictions based on the experience contained in the data. The results obtained with the technique as well as with the proposed method suggest that the performed modelling may be considered appropriate for the short term product sales prediction. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-01-01T00:00:00Z 2017-02-10T18:06:01Z 2017-02-10 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/11328/1749 http://hdl.handle.net/11328/1749 https://doi.org/10.1109/CISTI.2016.7521396 |
url |
http://hdl.handle.net/11328/1749 https://doi.org/10.1109/CISTI.2016.7521396 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1822233329235132416 |
dc.identifier.doi.none.fl_str_mv |
10.1109/CISTI.2016.7521396 |