Projection methods based on grids for weakly singular integral equations

Detalhes bibliográficos
Autor(a) principal: Filomena D. de Almeida
Data de Publicação: 2017
Outros Autores: Rosário Fernandes
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/10216/102786
Resumo: For the solution of a weakly singular Fredholm integral equation of the 2nd kind defined on a Banach space, for instance L1([a,b]), the classical projection methods with the discretization of the approximating operator on a finite dimensional subspace usually use a basis of this subspace built with grids on [a,b]. This may require a large dimension of the subspace. One way to overcome this problem is to include more information in the approximating operator or to compose one classical method with one step of iterative refinement. This is the case of Kulkarni method or iterated Kantorovich method. Here we compare these methods in terms of accuracy and arithmetic workload. A theorem stating comparable error bounds for these methods, under very weak assumptions on the kernel, the solution and the space where the problem is set, is given.
id RCAP_1f7c14705ae79473fb7148e9bb829821
oai_identifier_str oai:repositorio-aberto.up.pt:10216/102786
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Projection methods based on grids for weakly singular integral equationsMatemática, MatemáticaMathematics, MathematicsFor the solution of a weakly singular Fredholm integral equation of the 2nd kind defined on a Banach space, for instance L1([a,b]), the classical projection methods with the discretization of the approximating operator on a finite dimensional subspace usually use a basis of this subspace built with grids on [a,b]. This may require a large dimension of the subspace. One way to overcome this problem is to include more information in the approximating operator or to compose one classical method with one step of iterative refinement. This is the case of Kulkarni method or iterated Kantorovich method. Here we compare these methods in terms of accuracy and arithmetic workload. A theorem stating comparable error bounds for these methods, under very weak assumptions on the kernel, the solution and the space where the problem is set, is given.2017-04-302017-04-30T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/10216/102786eng0168-927410.1016/j.apnum.2016.10.006Filomena D. de AlmeidaRosário Fernandesinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T16:07:21Zoai:repositorio-aberto.up.pt:10216/102786Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:38:05.287421Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Projection methods based on grids for weakly singular integral equations
title Projection methods based on grids for weakly singular integral equations
spellingShingle Projection methods based on grids for weakly singular integral equations
Filomena D. de Almeida
Matemática, Matemática
Mathematics, Mathematics
title_short Projection methods based on grids for weakly singular integral equations
title_full Projection methods based on grids for weakly singular integral equations
title_fullStr Projection methods based on grids for weakly singular integral equations
title_full_unstemmed Projection methods based on grids for weakly singular integral equations
title_sort Projection methods based on grids for weakly singular integral equations
author Filomena D. de Almeida
author_facet Filomena D. de Almeida
Rosário Fernandes
author_role author
author2 Rosário Fernandes
author2_role author
dc.contributor.author.fl_str_mv Filomena D. de Almeida
Rosário Fernandes
dc.subject.por.fl_str_mv Matemática, Matemática
Mathematics, Mathematics
topic Matemática, Matemática
Mathematics, Mathematics
description For the solution of a weakly singular Fredholm integral equation of the 2nd kind defined on a Banach space, for instance L1([a,b]), the classical projection methods with the discretization of the approximating operator on a finite dimensional subspace usually use a basis of this subspace built with grids on [a,b]. This may require a large dimension of the subspace. One way to overcome this problem is to include more information in the approximating operator or to compose one classical method with one step of iterative refinement. This is the case of Kulkarni method or iterated Kantorovich method. Here we compare these methods in terms of accuracy and arithmetic workload. A theorem stating comparable error bounds for these methods, under very weak assumptions on the kernel, the solution and the space where the problem is set, is given.
publishDate 2017
dc.date.none.fl_str_mv 2017-04-30
2017-04-30T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/102786
url https://hdl.handle.net/10216/102786
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0168-9274
10.1016/j.apnum.2016.10.006
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136288148815872