On strong duality in linear copositive programming
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/30270 |
Resumo: | The paper is dedicated to the study of strong duality for a problem of linear copositive programming. Based on the recently introduced concept of the set of normalized immobile indices, an extended dual problem is deduced. The dual problem satisfies the strong duality relations and does not require any additional regularity assumptions such as constraint qualifications. The main difference with the previously obtained results consists in the fact that now the extended dual problem uses neither the immobile indices themselves nor the explicit information about the convex hull of these indices. The strong duality formulations presented in the paper have similar structure and properties as that proposed in the works of M. Ramana, L. Tuncel, and H. Wolkovicz, for semidefinite programming, but are obtained using different techniques. |
id |
RCAP_1fa36a23cfd0eeba58657ead378d37fb |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/30270 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
On strong duality in linear copositive programmingLinear Copositive ProgrammingStrong dualityNormalized immobile index setExtended dual problemConstraint QualificationsSemi-infinite Programming (SIP)Semidefinite programming (SDP)The paper is dedicated to the study of strong duality for a problem of linear copositive programming. Based on the recently introduced concept of the set of normalized immobile indices, an extended dual problem is deduced. The dual problem satisfies the strong duality relations and does not require any additional regularity assumptions such as constraint qualifications. The main difference with the previously obtained results consists in the fact that now the extended dual problem uses neither the immobile indices themselves nor the explicit information about the convex hull of these indices. The strong duality formulations presented in the paper have similar structure and properties as that proposed in the works of M. Ramana, L. Tuncel, and H. Wolkovicz, for semidefinite programming, but are obtained using different techniques.arXiv2021-01-11T12:19:40Z2020-04-23T00:00:00Z2020-04-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/30270engKostyukova, O. I.Tchemisova, T. V.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:58:28Zoai:ria.ua.pt:10773/30270Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:02:23.521630Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
On strong duality in linear copositive programming |
title |
On strong duality in linear copositive programming |
spellingShingle |
On strong duality in linear copositive programming Kostyukova, O. I. Linear Copositive Programming Strong duality Normalized immobile index set Extended dual problem Constraint Qualifications Semi-infinite Programming (SIP) Semidefinite programming (SDP) |
title_short |
On strong duality in linear copositive programming |
title_full |
On strong duality in linear copositive programming |
title_fullStr |
On strong duality in linear copositive programming |
title_full_unstemmed |
On strong duality in linear copositive programming |
title_sort |
On strong duality in linear copositive programming |
author |
Kostyukova, O. I. |
author_facet |
Kostyukova, O. I. Tchemisova, T. V. |
author_role |
author |
author2 |
Tchemisova, T. V. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Kostyukova, O. I. Tchemisova, T. V. |
dc.subject.por.fl_str_mv |
Linear Copositive Programming Strong duality Normalized immobile index set Extended dual problem Constraint Qualifications Semi-infinite Programming (SIP) Semidefinite programming (SDP) |
topic |
Linear Copositive Programming Strong duality Normalized immobile index set Extended dual problem Constraint Qualifications Semi-infinite Programming (SIP) Semidefinite programming (SDP) |
description |
The paper is dedicated to the study of strong duality for a problem of linear copositive programming. Based on the recently introduced concept of the set of normalized immobile indices, an extended dual problem is deduced. The dual problem satisfies the strong duality relations and does not require any additional regularity assumptions such as constraint qualifications. The main difference with the previously obtained results consists in the fact that now the extended dual problem uses neither the immobile indices themselves nor the explicit information about the convex hull of these indices. The strong duality formulations presented in the paper have similar structure and properties as that proposed in the works of M. Ramana, L. Tuncel, and H. Wolkovicz, for semidefinite programming, but are obtained using different techniques. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-04-23T00:00:00Z 2020-04-23 2021-01-11T12:19:40Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/30270 |
url |
http://hdl.handle.net/10773/30270 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
arXiv |
publisher.none.fl_str_mv |
arXiv |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137679373238272 |