On strong duality in linear copositive programming

Detalhes bibliográficos
Autor(a) principal: Kostyukova, O. I.
Data de Publicação: 2020
Outros Autores: Tchemisova, T. V.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/30270
Resumo: The paper is dedicated to the study of strong duality for a problem of linear copositive programming. Based on the recently introduced concept of the set of normalized immobile indices, an extended dual problem is deduced. The dual problem satisfies the strong duality relations and does not require any additional regularity assumptions such as constraint qualifications. The main difference with the previously obtained results consists in the fact that now the extended dual problem uses neither the immobile indices themselves nor the explicit information about the convex hull of these indices. The strong duality formulations presented in the paper have similar structure and properties as that proposed in the works of M. Ramana, L. Tuncel, and H. Wolkovicz, for semidefinite programming, but are obtained using different techniques.
id RCAP_1fa36a23cfd0eeba58657ead378d37fb
oai_identifier_str oai:ria.ua.pt:10773/30270
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling On strong duality in linear copositive programmingLinear Copositive ProgrammingStrong dualityNormalized immobile index setExtended dual problemConstraint QualificationsSemi-infinite Programming (SIP)Semidefinite programming (SDP)The paper is dedicated to the study of strong duality for a problem of linear copositive programming. Based on the recently introduced concept of the set of normalized immobile indices, an extended dual problem is deduced. The dual problem satisfies the strong duality relations and does not require any additional regularity assumptions such as constraint qualifications. The main difference with the previously obtained results consists in the fact that now the extended dual problem uses neither the immobile indices themselves nor the explicit information about the convex hull of these indices. The strong duality formulations presented in the paper have similar structure and properties as that proposed in the works of M. Ramana, L. Tuncel, and H. Wolkovicz, for semidefinite programming, but are obtained using different techniques.arXiv2021-01-11T12:19:40Z2020-04-23T00:00:00Z2020-04-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/30270engKostyukova, O. I.Tchemisova, T. V.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:58:28Zoai:ria.ua.pt:10773/30270Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:02:23.521630Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv On strong duality in linear copositive programming
title On strong duality in linear copositive programming
spellingShingle On strong duality in linear copositive programming
Kostyukova, O. I.
Linear Copositive Programming
Strong duality
Normalized immobile index set
Extended dual problem
Constraint Qualifications
Semi-infinite Programming (SIP)
Semidefinite programming (SDP)
title_short On strong duality in linear copositive programming
title_full On strong duality in linear copositive programming
title_fullStr On strong duality in linear copositive programming
title_full_unstemmed On strong duality in linear copositive programming
title_sort On strong duality in linear copositive programming
author Kostyukova, O. I.
author_facet Kostyukova, O. I.
Tchemisova, T. V.
author_role author
author2 Tchemisova, T. V.
author2_role author
dc.contributor.author.fl_str_mv Kostyukova, O. I.
Tchemisova, T. V.
dc.subject.por.fl_str_mv Linear Copositive Programming
Strong duality
Normalized immobile index set
Extended dual problem
Constraint Qualifications
Semi-infinite Programming (SIP)
Semidefinite programming (SDP)
topic Linear Copositive Programming
Strong duality
Normalized immobile index set
Extended dual problem
Constraint Qualifications
Semi-infinite Programming (SIP)
Semidefinite programming (SDP)
description The paper is dedicated to the study of strong duality for a problem of linear copositive programming. Based on the recently introduced concept of the set of normalized immobile indices, an extended dual problem is deduced. The dual problem satisfies the strong duality relations and does not require any additional regularity assumptions such as constraint qualifications. The main difference with the previously obtained results consists in the fact that now the extended dual problem uses neither the immobile indices themselves nor the explicit information about the convex hull of these indices. The strong duality formulations presented in the paper have similar structure and properties as that proposed in the works of M. Ramana, L. Tuncel, and H. Wolkovicz, for semidefinite programming, but are obtained using different techniques.
publishDate 2020
dc.date.none.fl_str_mv 2020-04-23T00:00:00Z
2020-04-23
2021-01-11T12:19:40Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/30270
url http://hdl.handle.net/10773/30270
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv arXiv
publisher.none.fl_str_mv arXiv
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137679373238272