Company failure prediction in the construction industry
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://repositorio.inesctec.pt/handle/123456789/5805 http://dx.doi.org/10.1016/j.eswa.2013.05.045 |
Resumo: | This paper proposes a new model to predict company failure in the construction industry. The model includes three major innovative aspects. The use of strategic variables reflecting the key specificities of construction companies, which are critical to explain company failure. The use of data mining techniques, i.e. support vector machine to predict company failure. The use of two different sampling methods (random undersampling and random oversampling with replacement) to balance class distributions. The model proposed was empirically tested using all Portuguese contractors that operated in 2009. It is concluded that support vector machine, with random oversampling and including strategic variables, is a very robust tool to predict company failure in the context of the construction industry. In particular, this model outperforms the results obtained with logistic regression. |
id |
RCAP_1fc8bada593ac0bb5f5fcc3c2144211c |
---|---|
oai_identifier_str |
oai:repositorio.inesctec.pt:123456789/5805 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Company failure prediction in the construction industryThis paper proposes a new model to predict company failure in the construction industry. The model includes three major innovative aspects. The use of strategic variables reflecting the key specificities of construction companies, which are critical to explain company failure. The use of data mining techniques, i.e. support vector machine to predict company failure. The use of two different sampling methods (random undersampling and random oversampling with replacement) to balance class distributions. The model proposed was empirically tested using all Portuguese contractors that operated in 2009. It is concluded that support vector machine, with random oversampling and including strategic variables, is a very robust tool to predict company failure in the context of the construction industry. In particular, this model outperforms the results obtained with logistic regression.2018-01-10T10:04:36Z2013-01-01T00:00:00Z2013info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://repositorio.inesctec.pt/handle/123456789/5805http://dx.doi.org/10.1016/j.eswa.2013.05.045engIsabel HortaAna Camanhoinfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-05-15T10:20:53Zoai:repositorio.inesctec.pt:123456789/5805Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:53:46.054283Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Company failure prediction in the construction industry |
title |
Company failure prediction in the construction industry |
spellingShingle |
Company failure prediction in the construction industry Isabel Horta |
title_short |
Company failure prediction in the construction industry |
title_full |
Company failure prediction in the construction industry |
title_fullStr |
Company failure prediction in the construction industry |
title_full_unstemmed |
Company failure prediction in the construction industry |
title_sort |
Company failure prediction in the construction industry |
author |
Isabel Horta |
author_facet |
Isabel Horta Ana Camanho |
author_role |
author |
author2 |
Ana Camanho |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Isabel Horta Ana Camanho |
description |
This paper proposes a new model to predict company failure in the construction industry. The model includes three major innovative aspects. The use of strategic variables reflecting the key specificities of construction companies, which are critical to explain company failure. The use of data mining techniques, i.e. support vector machine to predict company failure. The use of two different sampling methods (random undersampling and random oversampling with replacement) to balance class distributions. The model proposed was empirically tested using all Portuguese contractors that operated in 2009. It is concluded that support vector machine, with random oversampling and including strategic variables, is a very robust tool to predict company failure in the context of the construction industry. In particular, this model outperforms the results obtained with logistic regression. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-01-01T00:00:00Z 2013 2018-01-10T10:04:36Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.inesctec.pt/handle/123456789/5805 http://dx.doi.org/10.1016/j.eswa.2013.05.045 |
url |
http://repositorio.inesctec.pt/handle/123456789/5805 http://dx.doi.org/10.1016/j.eswa.2013.05.045 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131611220934657 |