Automatic quality assessment of focused cardiac ultrasound exams

Detalhes bibliográficos
Autor(a) principal: Rodrigues, Catarina da Cunha
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/1822/83887
Resumo: Dissertação de mestrado em Engenharia Biomédica (especialização em Eletrónica Médica)
id RCAP_1fd187415e4664f41eb20bc1d0e67ba7
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/83887
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Automatic quality assessment of focused cardiac ultrasound examsAvaliação automática da qualidade de exames cardíacos de ultrassom point-of-careAnálise de imagem médicaAvaliação de qualidadeDeep learningUltrassom cardíacoCardiac ultrasoundMedical image analysisQuality assessmentEngenharia e Tecnologia::Engenharia MédicaDissertação de mestrado em Engenharia Biomédica (especialização em Eletrónica Médica)O ecocardiograma dirigido realizado à cabeceira do doente (do inglês focused cardiac ultrasound, FoCUS) refere-se à utilização de imagens de ecografia, obtidas de forma rápida pelos clínicos, para avaliar a estrutura e a função cardíaca. Nos últimos anos, o FoCUS tornou-se uma ferramenta de diagnóstico de primeira linha indispensável, complementando a examinação física tradicional e acelerando a avaliação dos doentes em contexto agudo. Este exame pode ser realizado por uma vasta gama de médicos, de várias especialidades e com diferentes níveis de experiência, os quais devem ser proficientes na aquisição e interpretação das imagens. Estando a sua acuidade clínica intrinsecamente dependente da competência do utilizador, é expectável que operadores menos experientes estejam sujeitos a adquirir imagens das diferentes janelas acústicas cardíacas com uma qualidade inadequada. Com o objetivo de ajudar os sonógrafos a adquirir vídeos de FoCUS com elevada qualidade, esta tese propõe uma framework de avaliação automática de qualidade em duas etapas. A primeira etapa consiste na classificação de cada vídeo em uma das sete vistas de FoCUS. Para tal, propõe-se uma rede neuronal com arquitetura 3D baseada na ResNet-18, aliada a uma estratégia de augmentation que tira proveito das especificidades do ciclo cardíaco e a uma rotina de inferência à base de múltiplos clips. Esta metodologia e os seus componentes foram avaliados através de um conjunto extenso de testes, onde mostraram acurácia e robustez. Num conjunto independente de dados de teste, esta proposta obteve um MCC de 0.9569 e uma média de F1 de 0.9501. Após separar os vídeos por vistas, um conjunto de modelos especificamente treinados para cada vista avalia os vários atributos de qualidade e dá uma nota geral à qualidade da aquisição. O feedback foca-se em elementos como o ganho e a profundidade da imagem, ou a presença dos referenciais anatómicos necessários em cada janela cardíaca. No presente trabalho, os modelos propostos focaram se nas vistas subxifóide, apical quatro câmaras e veia cava inferior. Apesar de limitados pelo elevado desbalanceamento entre classes e pelo ruído nas anotações, os modelos propostos obtiveram um MCC médio de 0.6024 e um F1 médio de 0.7243 num conjunto independente de dados de teste. Com esta proposta, pretende-se apoiar a formação de profissionais médicos em FoCUS, bem como a sua prática clínica, para desta forma melhorar o cuidado prestado aos pacientes.Focused cardiac ultrasound (FoCUS) refers to the use of ultrasound imaging to evaluate cardiac structure and function at the bedside by a treating physician. In recent years, FoCUS has become an indispensable first-line diagnostic tool, complementing the traditional physical examination and accelerating patients’ evaluation in acute care settings. FoCUS may be carried out by a wide range of medical professionals, with varied specialties and backgrounds, all of whom should be proficient in image acquisition and interpretation. With its clinical efficacy tightly dependent on the operator’s skill, while experienced practitioners are expected to easily find and acquire each cardiac window, less trained technicians are prone to obtain images with suboptimal quality. Aiming to assist ultrasonography practitioners to acquire high quality FoCUS videos, this thesis proposes the development of a two-stage automatic quality assessment framework. The first stage comprehends the classification of each video into one of seven FoCUS views. To do so, a 3D neural network architecture based on the ResNet-18 was proposed, along with a training strategy that leverages of domain knowledge into the augmentation scheme and a multi-clip inference routine. This pipeline and the blocks it entails were evaluated in an extensive set of experiments, showing its accuracy and robustness. In a held-out test set, the proposal achieved a MCC of 0.9569 and a macro averaged F1-score of 0.9501. Upon being separated by views, each video is then passed through view-specific models that assess a variety of quality attributes and provide an overall acquisition quality score. The quality feedback focuses on features such as image gain, acquisition depth, and the presence of the necessary anatomical references in each cardiac window. At this stage, the current work focused in the subxiphoid, apical four chamber and inferior vena cava views. Despite affected by class imbalance and noisy labels, the proposed models achieved an average MCC of 0.6024 and an average F1-score of 0.7243 on the held-out test set. With this proposal, one intends to support medical professionals performing FoCUS in clinical practice, allowing them to improve their technique, and, in this way, improve patients’ care.The work presented in this project was performed in the Life and Health Sciences Research Institute (ICVS, School of Medicine) and in Centro ALGORITMI (School of Engineering), University of Minho. Financial support was provided by National funds, through the Foundation for Science and Technology (FCT) - project PTDC/EMD-EMD/1140/2020 and scholarship UMINHO/BIM/2021/64. It is also acknowledged the donation of a RTX A6000 GPU by NVIDIA (USA).Fonseca, Jaime C.Queirós, SandroUniversidade do MinhoRodrigues, Catarina da Cunha2022-12-202022-12-20T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://hdl.handle.net/1822/83887eng203250770info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-11T06:54:45Zoai:repositorium.sdum.uminho.pt:1822/83887Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-11T06:54:45Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Automatic quality assessment of focused cardiac ultrasound exams
Avaliação automática da qualidade de exames cardíacos de ultrassom point-of-care
title Automatic quality assessment of focused cardiac ultrasound exams
spellingShingle Automatic quality assessment of focused cardiac ultrasound exams
Rodrigues, Catarina da Cunha
Análise de imagem médica
Avaliação de qualidade
Deep learning
Ultrassom cardíaco
Cardiac ultrasound
Medical image analysis
Quality assessment
Engenharia e Tecnologia::Engenharia Médica
title_short Automatic quality assessment of focused cardiac ultrasound exams
title_full Automatic quality assessment of focused cardiac ultrasound exams
title_fullStr Automatic quality assessment of focused cardiac ultrasound exams
title_full_unstemmed Automatic quality assessment of focused cardiac ultrasound exams
title_sort Automatic quality assessment of focused cardiac ultrasound exams
author Rodrigues, Catarina da Cunha
author_facet Rodrigues, Catarina da Cunha
author_role author
dc.contributor.none.fl_str_mv Fonseca, Jaime C.
Queirós, Sandro
Universidade do Minho
dc.contributor.author.fl_str_mv Rodrigues, Catarina da Cunha
dc.subject.por.fl_str_mv Análise de imagem médica
Avaliação de qualidade
Deep learning
Ultrassom cardíaco
Cardiac ultrasound
Medical image analysis
Quality assessment
Engenharia e Tecnologia::Engenharia Médica
topic Análise de imagem médica
Avaliação de qualidade
Deep learning
Ultrassom cardíaco
Cardiac ultrasound
Medical image analysis
Quality assessment
Engenharia e Tecnologia::Engenharia Médica
description Dissertação de mestrado em Engenharia Biomédica (especialização em Eletrónica Médica)
publishDate 2022
dc.date.none.fl_str_mv 2022-12-20
2022-12-20T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1822/83887
url https://hdl.handle.net/1822/83887
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 203250770
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817545135619047424