Difference and differential equations for deformed Laguerre-Hahn orthogonal polynomials on the unit circle
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.6/9057 |
Resumo: | Sequences of orthogonal polynomials on the unit circle whose Carath´eodory function satisfies a Riccati-type differential equation with polynomial coefficients are studied. We deduce discrete Lax equations which lead to difference equations for the corresponding sequences of reflection parameters, and we analyze the continuous differential equations that arise when deformations through a dependence on a parameter t occur. |
id |
RCAP_1ff5e30ac339709cf3a46df2b8a8826b |
---|---|
oai_identifier_str |
oai:ubibliorum.ubi.pt:10400.6/9057 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Difference and differential equations for deformed Laguerre-Hahn orthogonal polynomials on the unit circleOrthogonal polynomialsSequences of orthogonal polynomials on the unit circle whose Carath´eodory function satisfies a Riccati-type differential equation with polynomial coefficients are studied. We deduce discrete Lax equations which lead to difference equations for the corresponding sequences of reflection parameters, and we analyze the continuous differential equations that arise when deformations through a dependence on a parameter t occur.uBibliorumBranquinho, A.Rebocho, M. N.2020-02-06T11:13:53Z20112011-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.6/9057engA. Branquinho and M.N. Rebocho, Difference and differential equations for deformed Laguerre-Hahn orthogonal polynomials on the unit circle, Journal of Physics A: Mathematical and Theoretical 44 (46) (2011), 465204.metadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-15T09:49:33Zoai:ubibliorum.ubi.pt:10400.6/9057Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:49:15.857178Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Difference and differential equations for deformed Laguerre-Hahn orthogonal polynomials on the unit circle |
title |
Difference and differential equations for deformed Laguerre-Hahn orthogonal polynomials on the unit circle |
spellingShingle |
Difference and differential equations for deformed Laguerre-Hahn orthogonal polynomials on the unit circle Branquinho, A. Orthogonal polynomials |
title_short |
Difference and differential equations for deformed Laguerre-Hahn orthogonal polynomials on the unit circle |
title_full |
Difference and differential equations for deformed Laguerre-Hahn orthogonal polynomials on the unit circle |
title_fullStr |
Difference and differential equations for deformed Laguerre-Hahn orthogonal polynomials on the unit circle |
title_full_unstemmed |
Difference and differential equations for deformed Laguerre-Hahn orthogonal polynomials on the unit circle |
title_sort |
Difference and differential equations for deformed Laguerre-Hahn orthogonal polynomials on the unit circle |
author |
Branquinho, A. |
author_facet |
Branquinho, A. Rebocho, M. N. |
author_role |
author |
author2 |
Rebocho, M. N. |
author2_role |
author |
dc.contributor.none.fl_str_mv |
uBibliorum |
dc.contributor.author.fl_str_mv |
Branquinho, A. Rebocho, M. N. |
dc.subject.por.fl_str_mv |
Orthogonal polynomials |
topic |
Orthogonal polynomials |
description |
Sequences of orthogonal polynomials on the unit circle whose Carath´eodory function satisfies a Riccati-type differential equation with polynomial coefficients are studied. We deduce discrete Lax equations which lead to difference equations for the corresponding sequences of reflection parameters, and we analyze the continuous differential equations that arise when deformations through a dependence on a parameter t occur. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011 2011-01-01T00:00:00Z 2020-02-06T11:13:53Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.6/9057 |
url |
http://hdl.handle.net/10400.6/9057 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
A. Branquinho and M.N. Rebocho, Difference and differential equations for deformed Laguerre-Hahn orthogonal polynomials on the unit circle, Journal of Physics A: Mathematical and Theoretical 44 (46) (2011), 465204. |
dc.rights.driver.fl_str_mv |
metadata only access info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
metadata only access |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136385248002048 |