Response of CFRP laminates under high strain rate compression until failure
Autor(a) principal: | |
---|---|
Data de Publicação: | 2005 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/10216/55267 |
Resumo: | This work describes an experimental characterization: the non-linear rate-dependent mechanical behavior of a composite material under compression. Fiber reinforced polymer matrix composites exhibit non-linear mechanical behavior, except in fiber direction, which is rate-dependent. In this work the Texipreg (R) HS160 REM material system was used, comprising high strength carbon fiber and epoxy resin. Unidirectional laminates were tested under uniaxial compression tests on a universal testing machine. The stress/strain curves of several specimens were obtained at three different strain rates of 0.07, 0.001 and 0.0001/s. In all cases tests were continued until failure was reached to measure the strain rate effect on strength. A 3-parameter constitutive viscoplastic model /6,7/ was used to describe the mechanical behavior. This model was developed based on data for strain rate between 0.0001 and 0.07/s. In transverse direction the viscoplastic model was able to predict the high strain rate experiments conducted on a Split Hopkinson Pressure Bar. |
id |
RCAP_201d377ec13981fa3923d6375955b1dd |
---|---|
oai_identifier_str |
oai:repositorio-aberto.up.pt:10216/55267 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Response of CFRP laminates under high strain rate compression until failureEngenharia dos materiaisMaterials engineeringThis work describes an experimental characterization: the non-linear rate-dependent mechanical behavior of a composite material under compression. Fiber reinforced polymer matrix composites exhibit non-linear mechanical behavior, except in fiber direction, which is rate-dependent. In this work the Texipreg (R) HS160 REM material system was used, comprising high strength carbon fiber and epoxy resin. Unidirectional laminates were tested under uniaxial compression tests on a universal testing machine. The stress/strain curves of several specimens were obtained at three different strain rates of 0.07, 0.001 and 0.0001/s. In all cases tests were continued until failure was reached to measure the strain rate effect on strength. A 3-parameter constitutive viscoplastic model /6,7/ was used to describe the mechanical behavior. This model was developed based on data for strain rate between 0.0001 and 0.07/s. In transverse direction the viscoplastic model was able to predict the high strain rate experiments conducted on a Split Hopkinson Pressure Bar.20052005-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/10216/55267eng0334-181XR. M. GuedesM. A VazF. J. FerreiraJ. L. Moraisinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T15:10:44Zoai:repositorio-aberto.up.pt:10216/55267Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:17:27.088669Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Response of CFRP laminates under high strain rate compression until failure |
title |
Response of CFRP laminates under high strain rate compression until failure |
spellingShingle |
Response of CFRP laminates under high strain rate compression until failure R. M. Guedes Engenharia dos materiais Materials engineering |
title_short |
Response of CFRP laminates under high strain rate compression until failure |
title_full |
Response of CFRP laminates under high strain rate compression until failure |
title_fullStr |
Response of CFRP laminates under high strain rate compression until failure |
title_full_unstemmed |
Response of CFRP laminates under high strain rate compression until failure |
title_sort |
Response of CFRP laminates under high strain rate compression until failure |
author |
R. M. Guedes |
author_facet |
R. M. Guedes M. A Vaz F. J. Ferreira J. L. Morais |
author_role |
author |
author2 |
M. A Vaz F. J. Ferreira J. L. Morais |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
R. M. Guedes M. A Vaz F. J. Ferreira J. L. Morais |
dc.subject.por.fl_str_mv |
Engenharia dos materiais Materials engineering |
topic |
Engenharia dos materiais Materials engineering |
description |
This work describes an experimental characterization: the non-linear rate-dependent mechanical behavior of a composite material under compression. Fiber reinforced polymer matrix composites exhibit non-linear mechanical behavior, except in fiber direction, which is rate-dependent. In this work the Texipreg (R) HS160 REM material system was used, comprising high strength carbon fiber and epoxy resin. Unidirectional laminates were tested under uniaxial compression tests on a universal testing machine. The stress/strain curves of several specimens were obtained at three different strain rates of 0.07, 0.001 and 0.0001/s. In all cases tests were continued until failure was reached to measure the strain rate effect on strength. A 3-parameter constitutive viscoplastic model /6,7/ was used to describe the mechanical behavior. This model was developed based on data for strain rate between 0.0001 and 0.07/s. In transverse direction the viscoplastic model was able to predict the high strain rate experiments conducted on a Split Hopkinson Pressure Bar. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005 2005-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10216/55267 |
url |
https://hdl.handle.net/10216/55267 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0334-181X |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136094605803520 |