On the cauchy problem for a coupled system of kdv equations : critical case

Detalhes bibliográficos
Autor(a) principal: Panthee, Mahendra Prasad
Data de Publicação: 2008
Outros Autores: Scialom, Marcia
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/11600
Resumo: We investigate some well-posedness issues for the initial value problem associated to the system \begin{equation*} \begin{cases} u_{t}+\partial_x^3u+\partial_x(u^2v^3) =0,\\ v_{t}+\partial_x^3v+\partial_x(u^3v^2)=0, \end{cases} \end{equation*} for given data in low order Sobolev spaces $H^s(\mathbb{R})\times H^s(\mathbb{R})$. We prove local and global well-posedness results utilizing the sharp smoothing estimates associated to the linear problem combined with the contraction mapping principle. For data with small Sobolev norm we obtain global solution whenever $s\geq 0$ by using global smoothing estimates. In particular, for data satisfying $\delta<\|(u_0, v_0)\|_{L^2\times L^2} < \|(S, S)\|_{L^2\times L^2}$, where $S$ is solitary wave solution, we get global solution whenever $s>3/4$. To prove this last result, we apply the splitting argument introduced by Bourgain [5] and further simplified by Fonseca, Linares and Ponce [6, 7].
id RCAP_202122e0f88c72f84b233ea59ed838e4
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/11600
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling On the cauchy problem for a coupled system of kdv equations : critical caseCauchy problemKdV equationWell-posednessWe investigate some well-posedness issues for the initial value problem associated to the system \begin{equation*} \begin{cases} u_{t}+\partial_x^3u+\partial_x(u^2v^3) =0,\\ v_{t}+\partial_x^3v+\partial_x(u^3v^2)=0, \end{cases} \end{equation*} for given data in low order Sobolev spaces $H^s(\mathbb{R})\times H^s(\mathbb{R})$. We prove local and global well-posedness results utilizing the sharp smoothing estimates associated to the linear problem combined with the contraction mapping principle. For data with small Sobolev norm we obtain global solution whenever $s\geq 0$ by using global smoothing estimates. In particular, for data satisfying $\delta<\|(u_0, v_0)\|_{L^2\times L^2} < \|(S, S)\|_{L^2\times L^2}$, where $S$ is solitary wave solution, we get global solution whenever $s>3/4$. To prove this last result, we apply the splitting argument introduced by Bourgain [5] and further simplified by Fonseca, Linares and Ponce [6, 7].Fundação para a Ciência e a Tecnologia (FCT) - POCI 2010/FEDER, bolsa SFRH/BPD/22018/2005Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Khayyam PublishingUniversidade do MinhoPanthee, Mahendra PrasadScialom, Marcia20082008-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/11600eng"Advances in Differential Equations." ISSN 1079-9389. 13:1-2 (2008) 1-16.1079-9389http://www.aftabi.com/ADE/ade13.htmlinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:32:13Zoai:repositorium.sdum.uminho.pt:1822/11600Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:27:31.921724Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv On the cauchy problem for a coupled system of kdv equations : critical case
title On the cauchy problem for a coupled system of kdv equations : critical case
spellingShingle On the cauchy problem for a coupled system of kdv equations : critical case
Panthee, Mahendra Prasad
Cauchy problem
KdV equation
Well-posedness
title_short On the cauchy problem for a coupled system of kdv equations : critical case
title_full On the cauchy problem for a coupled system of kdv equations : critical case
title_fullStr On the cauchy problem for a coupled system of kdv equations : critical case
title_full_unstemmed On the cauchy problem for a coupled system of kdv equations : critical case
title_sort On the cauchy problem for a coupled system of kdv equations : critical case
author Panthee, Mahendra Prasad
author_facet Panthee, Mahendra Prasad
Scialom, Marcia
author_role author
author2 Scialom, Marcia
author2_role author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Panthee, Mahendra Prasad
Scialom, Marcia
dc.subject.por.fl_str_mv Cauchy problem
KdV equation
Well-posedness
topic Cauchy problem
KdV equation
Well-posedness
description We investigate some well-posedness issues for the initial value problem associated to the system \begin{equation*} \begin{cases} u_{t}+\partial_x^3u+\partial_x(u^2v^3) =0,\\ v_{t}+\partial_x^3v+\partial_x(u^3v^2)=0, \end{cases} \end{equation*} for given data in low order Sobolev spaces $H^s(\mathbb{R})\times H^s(\mathbb{R})$. We prove local and global well-posedness results utilizing the sharp smoothing estimates associated to the linear problem combined with the contraction mapping principle. For data with small Sobolev norm we obtain global solution whenever $s\geq 0$ by using global smoothing estimates. In particular, for data satisfying $\delta<\|(u_0, v_0)\|_{L^2\times L^2} < \|(S, S)\|_{L^2\times L^2}$, where $S$ is solitary wave solution, we get global solution whenever $s>3/4$. To prove this last result, we apply the splitting argument introduced by Bourgain [5] and further simplified by Fonseca, Linares and Ponce [6, 7].
publishDate 2008
dc.date.none.fl_str_mv 2008
2008-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/11600
url http://hdl.handle.net/1822/11600
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv "Advances in Differential Equations." ISSN 1079-9389. 13:1-2 (2008) 1-16.
1079-9389
http://www.aftabi.com/ADE/ade13.html
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Khayyam Publishing
publisher.none.fl_str_mv Khayyam Publishing
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132767134416896