On the cauchy problem for a coupled system of kdv equations : critical case
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/11600 |
Resumo: | We investigate some well-posedness issues for the initial value problem associated to the system \begin{equation*} \begin{cases} u_{t}+\partial_x^3u+\partial_x(u^2v^3) =0,\\ v_{t}+\partial_x^3v+\partial_x(u^3v^2)=0, \end{cases} \end{equation*} for given data in low order Sobolev spaces $H^s(\mathbb{R})\times H^s(\mathbb{R})$. We prove local and global well-posedness results utilizing the sharp smoothing estimates associated to the linear problem combined with the contraction mapping principle. For data with small Sobolev norm we obtain global solution whenever $s\geq 0$ by using global smoothing estimates. In particular, for data satisfying $\delta<\|(u_0, v_0)\|_{L^2\times L^2} < \|(S, S)\|_{L^2\times L^2}$, where $S$ is solitary wave solution, we get global solution whenever $s>3/4$. To prove this last result, we apply the splitting argument introduced by Bourgain [5] and further simplified by Fonseca, Linares and Ponce [6, 7]. |
id |
RCAP_202122e0f88c72f84b233ea59ed838e4 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/11600 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
On the cauchy problem for a coupled system of kdv equations : critical caseCauchy problemKdV equationWell-posednessWe investigate some well-posedness issues for the initial value problem associated to the system \begin{equation*} \begin{cases} u_{t}+\partial_x^3u+\partial_x(u^2v^3) =0,\\ v_{t}+\partial_x^3v+\partial_x(u^3v^2)=0, \end{cases} \end{equation*} for given data in low order Sobolev spaces $H^s(\mathbb{R})\times H^s(\mathbb{R})$. We prove local and global well-posedness results utilizing the sharp smoothing estimates associated to the linear problem combined with the contraction mapping principle. For data with small Sobolev norm we obtain global solution whenever $s\geq 0$ by using global smoothing estimates. In particular, for data satisfying $\delta<\|(u_0, v_0)\|_{L^2\times L^2} < \|(S, S)\|_{L^2\times L^2}$, where $S$ is solitary wave solution, we get global solution whenever $s>3/4$. To prove this last result, we apply the splitting argument introduced by Bourgain [5] and further simplified by Fonseca, Linares and Ponce [6, 7].Fundação para a Ciência e a Tecnologia (FCT) - POCI 2010/FEDER, bolsa SFRH/BPD/22018/2005Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Khayyam PublishingUniversidade do MinhoPanthee, Mahendra PrasadScialom, Marcia20082008-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/11600eng"Advances in Differential Equations." ISSN 1079-9389. 13:1-2 (2008) 1-16.1079-9389http://www.aftabi.com/ADE/ade13.htmlinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:32:13Zoai:repositorium.sdum.uminho.pt:1822/11600Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:27:31.921724Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
On the cauchy problem for a coupled system of kdv equations : critical case |
title |
On the cauchy problem for a coupled system of kdv equations : critical case |
spellingShingle |
On the cauchy problem for a coupled system of kdv equations : critical case Panthee, Mahendra Prasad Cauchy problem KdV equation Well-posedness |
title_short |
On the cauchy problem for a coupled system of kdv equations : critical case |
title_full |
On the cauchy problem for a coupled system of kdv equations : critical case |
title_fullStr |
On the cauchy problem for a coupled system of kdv equations : critical case |
title_full_unstemmed |
On the cauchy problem for a coupled system of kdv equations : critical case |
title_sort |
On the cauchy problem for a coupled system of kdv equations : critical case |
author |
Panthee, Mahendra Prasad |
author_facet |
Panthee, Mahendra Prasad Scialom, Marcia |
author_role |
author |
author2 |
Scialom, Marcia |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Panthee, Mahendra Prasad Scialom, Marcia |
dc.subject.por.fl_str_mv |
Cauchy problem KdV equation Well-posedness |
topic |
Cauchy problem KdV equation Well-posedness |
description |
We investigate some well-posedness issues for the initial value problem associated to the system \begin{equation*} \begin{cases} u_{t}+\partial_x^3u+\partial_x(u^2v^3) =0,\\ v_{t}+\partial_x^3v+\partial_x(u^3v^2)=0, \end{cases} \end{equation*} for given data in low order Sobolev spaces $H^s(\mathbb{R})\times H^s(\mathbb{R})$. We prove local and global well-posedness results utilizing the sharp smoothing estimates associated to the linear problem combined with the contraction mapping principle. For data with small Sobolev norm we obtain global solution whenever $s\geq 0$ by using global smoothing estimates. In particular, for data satisfying $\delta<\|(u_0, v_0)\|_{L^2\times L^2} < \|(S, S)\|_{L^2\times L^2}$, where $S$ is solitary wave solution, we get global solution whenever $s>3/4$. To prove this last result, we apply the splitting argument introduced by Bourgain [5] and further simplified by Fonseca, Linares and Ponce [6, 7]. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008 2008-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/11600 |
url |
http://hdl.handle.net/1822/11600 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
"Advances in Differential Equations." ISSN 1079-9389. 13:1-2 (2008) 1-16. 1079-9389 http://www.aftabi.com/ADE/ade13.html |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Khayyam Publishing |
publisher.none.fl_str_mv |
Khayyam Publishing |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132767134416896 |