Prediction of road accident severity using the ordered probit model
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/45691 https://doi.org/10.1016/j.trpro.2014.10.107 |
Resumo: | The ordered probit model is used to examine the contribution of several factors to the injury severity faced by motor-vehicle occupants involved in road accidents. The estimated results suggest that motor-vehicle occupants travelling in light-vehicles, at two-way roads, and on dry road surfaces tend to suffer more severe injuries than those who travel in heavy-vehicles, at one-way roads, and on wet road surfaces. Additionally, the driver's seat is clearly the safest seating position, urban areas seem to originate less serious accidents than rural areas, and women tend to be more likely to suffer serious or fatal injuries than men. |
id |
RCAP_207889654054b325d15b71fd663fd1f2 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/45691 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Prediction of road accident severity using the ordered probit modelRoad safetyroad accident modellinginjury severitymotor-vehicle occupantsordered probit modelThe ordered probit model is used to examine the contribution of several factors to the injury severity faced by motor-vehicle occupants involved in road accidents. The estimated results suggest that motor-vehicle occupants travelling in light-vehicles, at two-way roads, and on dry road surfaces tend to suffer more severe injuries than those who travel in heavy-vehicles, at one-way roads, and on wet road surfaces. Additionally, the driver's seat is clearly the safest seating position, urban areas seem to originate less serious accidents than rural areas, and women tend to be more likely to suffer serious or fatal injuries than men.Elsevier2014-11-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/45691http://hdl.handle.net/10316/45691https://doi.org/10.1016/j.trpro.2014.10.107eng2352-1465http://www.sciencedirect.com/science/article/pii/S2352146514002701?via%3DihubGarrido, RuiBastos Silva, AnaAlmeida, Ana Maria deAlmeida, J-P Duarte deinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2021-08-25T08:25:06Zoai:estudogeral.uc.pt:10316/45691Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:53:44.750647Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Prediction of road accident severity using the ordered probit model |
title |
Prediction of road accident severity using the ordered probit model |
spellingShingle |
Prediction of road accident severity using the ordered probit model Garrido, Rui Road safety road accident modelling injury severity motor-vehicle occupants ordered probit model |
title_short |
Prediction of road accident severity using the ordered probit model |
title_full |
Prediction of road accident severity using the ordered probit model |
title_fullStr |
Prediction of road accident severity using the ordered probit model |
title_full_unstemmed |
Prediction of road accident severity using the ordered probit model |
title_sort |
Prediction of road accident severity using the ordered probit model |
author |
Garrido, Rui |
author_facet |
Garrido, Rui Bastos Silva, Ana Almeida, Ana Maria de Almeida, J-P Duarte de |
author_role |
author |
author2 |
Bastos Silva, Ana Almeida, Ana Maria de Almeida, J-P Duarte de |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Garrido, Rui Bastos Silva, Ana Almeida, Ana Maria de Almeida, J-P Duarte de |
dc.subject.por.fl_str_mv |
Road safety road accident modelling injury severity motor-vehicle occupants ordered probit model |
topic |
Road safety road accident modelling injury severity motor-vehicle occupants ordered probit model |
description |
The ordered probit model is used to examine the contribution of several factors to the injury severity faced by motor-vehicle occupants involved in road accidents. The estimated results suggest that motor-vehicle occupants travelling in light-vehicles, at two-way roads, and on dry road surfaces tend to suffer more severe injuries than those who travel in heavy-vehicles, at one-way roads, and on wet road surfaces. Additionally, the driver's seat is clearly the safest seating position, urban areas seem to originate less serious accidents than rural areas, and women tend to be more likely to suffer serious or fatal injuries than men. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-11-08 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/45691 http://hdl.handle.net/10316/45691 https://doi.org/10.1016/j.trpro.2014.10.107 |
url |
http://hdl.handle.net/10316/45691 https://doi.org/10.1016/j.trpro.2014.10.107 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2352-1465 http://www.sciencedirect.com/science/article/pii/S2352146514002701?via%3Dihub |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133823770820608 |