ULEEN: A novel architecture for ultra low-energy edge neural networks

Detalhes bibliográficos
Autor(a) principal: Susskind, Z.
Data de Publicação: 2023
Outros Autores: Arora, A., Miranda, I. D. S., Bacellar, A. T. L., Villon, L. A. Q., Katopodis, R. F., Araújo, L. S. de, Dutra, D. L. C., Lima, P. M. V. L., França, F., Breternitz, M., John, L. K.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10071/30565
Resumo: "Extreme edge"1 devices, such as smart sensors, are a uniquely challenging environment for the deployment of machine learning. The tiny energy budgets of these devices lie beyond what is feasible for conventional deep neural networks, particularly in high-throughput scenarios, requiring us to rethink how we approach edge inference. In this work, we propose ULEEN, a model and FPGA-based accelerator architecture based on weightless neural networks (WNNs). WNNs eliminate energy-intensive arithmetic operations, instead using table lookups to perform computation, which makes them theoretically well-suited for edge inference. However, WNNs have historically suffered from poor accuracy and excessive memory usage. ULEEN incorporates algorithmic improvements and a novel training strategy inspired by binary neural networks (BNNs) to make significant strides in addressing these issues. We compare ULEEN against BNNs in software and hardware using the four MLPerf Tiny datasets and MNIST. Our FPGA implementations of ULEEN accomplish classification at 4.0-14.3 million inferences per second, improving area-normalized throughput by an average of 3.6× and steady-state energy efficiency by an average of 7.1× compared to the FPGA-based Xilinx FINN BNN inference platform. While ULEEN is not a universally applicable machine learning model, we demonstrate that it can be an excellent choice for certain applications in energy- and latency-critical edge environments.
id RCAP_20e307b3e1a45ff656f515ab52907d03
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/30565
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling ULEEN: A novel architecture for ultra low-energy edge neural networksWeightless neural networksWiSARDNeural networksInferenceEdge computingMLPerf tinyHigh throughput computing"Extreme edge"1 devices, such as smart sensors, are a uniquely challenging environment for the deployment of machine learning. The tiny energy budgets of these devices lie beyond what is feasible for conventional deep neural networks, particularly in high-throughput scenarios, requiring us to rethink how we approach edge inference. In this work, we propose ULEEN, a model and FPGA-based accelerator architecture based on weightless neural networks (WNNs). WNNs eliminate energy-intensive arithmetic operations, instead using table lookups to perform computation, which makes them theoretically well-suited for edge inference. However, WNNs have historically suffered from poor accuracy and excessive memory usage. ULEEN incorporates algorithmic improvements and a novel training strategy inspired by binary neural networks (BNNs) to make significant strides in addressing these issues. We compare ULEEN against BNNs in software and hardware using the four MLPerf Tiny datasets and MNIST. Our FPGA implementations of ULEEN accomplish classification at 4.0-14.3 million inferences per second, improving area-normalized throughput by an average of 3.6× and steady-state energy efficiency by an average of 7.1× compared to the FPGA-based Xilinx FINN BNN inference platform. While ULEEN is not a universally applicable machine learning model, we demonstrate that it can be an excellent choice for certain applications in energy- and latency-critical edge environments.Association for Computing Machinery2024-01-24T10:03:02Z2023-01-01T00:00:00Z20232024-01-24T10:01:19Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10071/30565eng1544-356610.1145/3629522Susskind, Z.Arora, A.Miranda, I. D. S.Bacellar, A. T. L.Villon, L. A. Q.Katopodis, R. F.Araújo, L. S. deDutra, D. L. C.Lima, P. M. V. L.França, F.Breternitz, M.John, L. K.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-28T01:20:06Zoai:repositorio.iscte-iul.pt:10071/30565Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:58:18.082291Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv ULEEN: A novel architecture for ultra low-energy edge neural networks
title ULEEN: A novel architecture for ultra low-energy edge neural networks
spellingShingle ULEEN: A novel architecture for ultra low-energy edge neural networks
Susskind, Z.
Weightless neural networks
WiSARD
Neural networks
Inference
Edge computing
MLPerf tiny
High throughput computing
title_short ULEEN: A novel architecture for ultra low-energy edge neural networks
title_full ULEEN: A novel architecture for ultra low-energy edge neural networks
title_fullStr ULEEN: A novel architecture for ultra low-energy edge neural networks
title_full_unstemmed ULEEN: A novel architecture for ultra low-energy edge neural networks
title_sort ULEEN: A novel architecture for ultra low-energy edge neural networks
author Susskind, Z.
author_facet Susskind, Z.
Arora, A.
Miranda, I. D. S.
Bacellar, A. T. L.
Villon, L. A. Q.
Katopodis, R. F.
Araújo, L. S. de
Dutra, D. L. C.
Lima, P. M. V. L.
França, F.
Breternitz, M.
John, L. K.
author_role author
author2 Arora, A.
Miranda, I. D. S.
Bacellar, A. T. L.
Villon, L. A. Q.
Katopodis, R. F.
Araújo, L. S. de
Dutra, D. L. C.
Lima, P. M. V. L.
França, F.
Breternitz, M.
John, L. K.
author2_role author
author
author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Susskind, Z.
Arora, A.
Miranda, I. D. S.
Bacellar, A. T. L.
Villon, L. A. Q.
Katopodis, R. F.
Araújo, L. S. de
Dutra, D. L. C.
Lima, P. M. V. L.
França, F.
Breternitz, M.
John, L. K.
dc.subject.por.fl_str_mv Weightless neural networks
WiSARD
Neural networks
Inference
Edge computing
MLPerf tiny
High throughput computing
topic Weightless neural networks
WiSARD
Neural networks
Inference
Edge computing
MLPerf tiny
High throughput computing
description "Extreme edge"1 devices, such as smart sensors, are a uniquely challenging environment for the deployment of machine learning. The tiny energy budgets of these devices lie beyond what is feasible for conventional deep neural networks, particularly in high-throughput scenarios, requiring us to rethink how we approach edge inference. In this work, we propose ULEEN, a model and FPGA-based accelerator architecture based on weightless neural networks (WNNs). WNNs eliminate energy-intensive arithmetic operations, instead using table lookups to perform computation, which makes them theoretically well-suited for edge inference. However, WNNs have historically suffered from poor accuracy and excessive memory usage. ULEEN incorporates algorithmic improvements and a novel training strategy inspired by binary neural networks (BNNs) to make significant strides in addressing these issues. We compare ULEEN against BNNs in software and hardware using the four MLPerf Tiny datasets and MNIST. Our FPGA implementations of ULEEN accomplish classification at 4.0-14.3 million inferences per second, improving area-normalized throughput by an average of 3.6× and steady-state energy efficiency by an average of 7.1× compared to the FPGA-based Xilinx FINN BNN inference platform. While ULEEN is not a universally applicable machine learning model, we demonstrate that it can be an excellent choice for certain applications in energy- and latency-critical edge environments.
publishDate 2023
dc.date.none.fl_str_mv 2023-01-01T00:00:00Z
2023
2024-01-24T10:03:02Z
2024-01-24T10:01:19Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/30565
url http://hdl.handle.net/10071/30565
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1544-3566
10.1145/3629522
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Association for Computing Machinery
publisher.none.fl_str_mv Association for Computing Machinery
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137067838472192