ULEEN: A novel architecture for ultra low-energy edge neural networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/30565 |
Resumo: | "Extreme edge"1 devices, such as smart sensors, are a uniquely challenging environment for the deployment of machine learning. The tiny energy budgets of these devices lie beyond what is feasible for conventional deep neural networks, particularly in high-throughput scenarios, requiring us to rethink how we approach edge inference. In this work, we propose ULEEN, a model and FPGA-based accelerator architecture based on weightless neural networks (WNNs). WNNs eliminate energy-intensive arithmetic operations, instead using table lookups to perform computation, which makes them theoretically well-suited for edge inference. However, WNNs have historically suffered from poor accuracy and excessive memory usage. ULEEN incorporates algorithmic improvements and a novel training strategy inspired by binary neural networks (BNNs) to make significant strides in addressing these issues. We compare ULEEN against BNNs in software and hardware using the four MLPerf Tiny datasets and MNIST. Our FPGA implementations of ULEEN accomplish classification at 4.0-14.3 million inferences per second, improving area-normalized throughput by an average of 3.6× and steady-state energy efficiency by an average of 7.1× compared to the FPGA-based Xilinx FINN BNN inference platform. While ULEEN is not a universally applicable machine learning model, we demonstrate that it can be an excellent choice for certain applications in energy- and latency-critical edge environments. |
id |
RCAP_20e307b3e1a45ff656f515ab52907d03 |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/30565 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
ULEEN: A novel architecture for ultra low-energy edge neural networksWeightless neural networksWiSARDNeural networksInferenceEdge computingMLPerf tinyHigh throughput computing"Extreme edge"1 devices, such as smart sensors, are a uniquely challenging environment for the deployment of machine learning. The tiny energy budgets of these devices lie beyond what is feasible for conventional deep neural networks, particularly in high-throughput scenarios, requiring us to rethink how we approach edge inference. In this work, we propose ULEEN, a model and FPGA-based accelerator architecture based on weightless neural networks (WNNs). WNNs eliminate energy-intensive arithmetic operations, instead using table lookups to perform computation, which makes them theoretically well-suited for edge inference. However, WNNs have historically suffered from poor accuracy and excessive memory usage. ULEEN incorporates algorithmic improvements and a novel training strategy inspired by binary neural networks (BNNs) to make significant strides in addressing these issues. We compare ULEEN against BNNs in software and hardware using the four MLPerf Tiny datasets and MNIST. Our FPGA implementations of ULEEN accomplish classification at 4.0-14.3 million inferences per second, improving area-normalized throughput by an average of 3.6× and steady-state energy efficiency by an average of 7.1× compared to the FPGA-based Xilinx FINN BNN inference platform. While ULEEN is not a universally applicable machine learning model, we demonstrate that it can be an excellent choice for certain applications in energy- and latency-critical edge environments.Association for Computing Machinery2024-01-24T10:03:02Z2023-01-01T00:00:00Z20232024-01-24T10:01:19Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10071/30565eng1544-356610.1145/3629522Susskind, Z.Arora, A.Miranda, I. D. S.Bacellar, A. T. L.Villon, L. A. Q.Katopodis, R. F.Araújo, L. S. deDutra, D. L. C.Lima, P. M. V. L.França, F.Breternitz, M.John, L. K.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-28T01:20:06Zoai:repositorio.iscte-iul.pt:10071/30565Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:58:18.082291Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
ULEEN: A novel architecture for ultra low-energy edge neural networks |
title |
ULEEN: A novel architecture for ultra low-energy edge neural networks |
spellingShingle |
ULEEN: A novel architecture for ultra low-energy edge neural networks Susskind, Z. Weightless neural networks WiSARD Neural networks Inference Edge computing MLPerf tiny High throughput computing |
title_short |
ULEEN: A novel architecture for ultra low-energy edge neural networks |
title_full |
ULEEN: A novel architecture for ultra low-energy edge neural networks |
title_fullStr |
ULEEN: A novel architecture for ultra low-energy edge neural networks |
title_full_unstemmed |
ULEEN: A novel architecture for ultra low-energy edge neural networks |
title_sort |
ULEEN: A novel architecture for ultra low-energy edge neural networks |
author |
Susskind, Z. |
author_facet |
Susskind, Z. Arora, A. Miranda, I. D. S. Bacellar, A. T. L. Villon, L. A. Q. Katopodis, R. F. Araújo, L. S. de Dutra, D. L. C. Lima, P. M. V. L. França, F. Breternitz, M. John, L. K. |
author_role |
author |
author2 |
Arora, A. Miranda, I. D. S. Bacellar, A. T. L. Villon, L. A. Q. Katopodis, R. F. Araújo, L. S. de Dutra, D. L. C. Lima, P. M. V. L. França, F. Breternitz, M. John, L. K. |
author2_role |
author author author author author author author author author author author |
dc.contributor.author.fl_str_mv |
Susskind, Z. Arora, A. Miranda, I. D. S. Bacellar, A. T. L. Villon, L. A. Q. Katopodis, R. F. Araújo, L. S. de Dutra, D. L. C. Lima, P. M. V. L. França, F. Breternitz, M. John, L. K. |
dc.subject.por.fl_str_mv |
Weightless neural networks WiSARD Neural networks Inference Edge computing MLPerf tiny High throughput computing |
topic |
Weightless neural networks WiSARD Neural networks Inference Edge computing MLPerf tiny High throughput computing |
description |
"Extreme edge"1 devices, such as smart sensors, are a uniquely challenging environment for the deployment of machine learning. The tiny energy budgets of these devices lie beyond what is feasible for conventional deep neural networks, particularly in high-throughput scenarios, requiring us to rethink how we approach edge inference. In this work, we propose ULEEN, a model and FPGA-based accelerator architecture based on weightless neural networks (WNNs). WNNs eliminate energy-intensive arithmetic operations, instead using table lookups to perform computation, which makes them theoretically well-suited for edge inference. However, WNNs have historically suffered from poor accuracy and excessive memory usage. ULEEN incorporates algorithmic improvements and a novel training strategy inspired by binary neural networks (BNNs) to make significant strides in addressing these issues. We compare ULEEN against BNNs in software and hardware using the four MLPerf Tiny datasets and MNIST. Our FPGA implementations of ULEEN accomplish classification at 4.0-14.3 million inferences per second, improving area-normalized throughput by an average of 3.6× and steady-state energy efficiency by an average of 7.1× compared to the FPGA-based Xilinx FINN BNN inference platform. While ULEEN is not a universally applicable machine learning model, we demonstrate that it can be an excellent choice for certain applications in energy- and latency-critical edge environments. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-01-01T00:00:00Z 2023 2024-01-24T10:03:02Z 2024-01-24T10:01:19Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/30565 |
url |
http://hdl.handle.net/10071/30565 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1544-3566 10.1145/3629522 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Association for Computing Machinery |
publisher.none.fl_str_mv |
Association for Computing Machinery |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137067838472192 |