Quantum communications in optical fibers
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/16306 |
Resumo: | This thesis begins by proposing the implementation of a probabilistic photon source based on the stimulated four-wave mixing (FWM) process. This source was implemented experimentally and characterized in terms of its statistical distribution. Next, the impact of the stimulated FWM process in a co-propagating quantum signal was studied experimentally. Finally, the violation of Clauser-Horne-Shimony-Holt (CHSH) inequality was experimentally verified using polarization-entangled photon pairs, which were obtained from the spontaneous FWM process in a Sagnac loop. The experimental evolution of the quantum-bit error rate (QBER) in a system without control of polarization, using this degree of freedom to encode information, was studied. It was found out that the QBER increases with the length of the transmission fiber. It was also verified that the increase in the QBER was due to the random rotation of photon’s polarization. A model for the rigorous estimation of the QBER was derived and developed an automatic method to compensate the random rotations of polarization. The method was validated numerically and experimentally, in a transmission system with 40km, showing that it can compensate for the rotations that photons suffer during propagation in optical fibers. Finally, a quantum bit commitment (QBC) protocol between two untrusted entities was implemented. The encoding was performed using two nonorthogonal states of polarization (SOPs). As quantum channel between the two entities, it was first assumed that the transmitter and the receiver were side by side, and after that, they were separated by 8 km and finally, that they were 16km from each other. The implementation of the protocol was performed with a success rate in measurements exceeding 93%, well above the theoretical security limit of 85%. The best strategy for deceiving the commitment was also implemented, and its security experimentally confirmed with a confidence of 7 standard deviations. |
id |
RCAP_21110feeeed76d7dde29860263845298 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/16306 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Quantum communications in optical fibersEngenharia físicaFibras ópticasComunicação quânticaThis thesis begins by proposing the implementation of a probabilistic photon source based on the stimulated four-wave mixing (FWM) process. This source was implemented experimentally and characterized in terms of its statistical distribution. Next, the impact of the stimulated FWM process in a co-propagating quantum signal was studied experimentally. Finally, the violation of Clauser-Horne-Shimony-Holt (CHSH) inequality was experimentally verified using polarization-entangled photon pairs, which were obtained from the spontaneous FWM process in a Sagnac loop. The experimental evolution of the quantum-bit error rate (QBER) in a system without control of polarization, using this degree of freedom to encode information, was studied. It was found out that the QBER increases with the length of the transmission fiber. It was also verified that the increase in the QBER was due to the random rotation of photon’s polarization. A model for the rigorous estimation of the QBER was derived and developed an automatic method to compensate the random rotations of polarization. The method was validated numerically and experimentally, in a transmission system with 40km, showing that it can compensate for the rotations that photons suffer during propagation in optical fibers. Finally, a quantum bit commitment (QBC) protocol between two untrusted entities was implemented. The encoding was performed using two nonorthogonal states of polarization (SOPs). As quantum channel between the two entities, it was first assumed that the transmitter and the receiver were side by side, and after that, they were separated by 8 km and finally, that they were 16km from each other. The implementation of the protocol was performed with a success rate in measurements exceeding 93%, well above the theoretical security limit of 85%. The best strategy for deceiving the commitment was also implemented, and its security experimentally confirmed with a confidence of 7 standard deviations.Nesta tese começou-se por propor a realização de uma fonte de fotões probabilística baseada no processo estimulado de mistura de quatro ondas (FWM). Implementou-se essa fonte no laboratório e caracterizou-se experimentalmente a sua distribuição estatística. Depois, estudou-se experimentalmente o impacto do processo estimulado de FWM num sinal quântico que se propaga na mesma fibra ótica. Por fim, foi verificada experimentalmente a violação da desigualdade de ClauserHorne-Shimony-Holt (CHSH) usando pares de fotões entrelaçados, que foram obtidos a partir do processo espontâneo de FWM num ciclo de Sagnac. Estudou-se a evolução da taxa de erro de bits quânticos (QBER) num sistema sem controlo de polarização, quando este grau de liberdade é usado para codificar a informação. Verificou-se que a QBER aumenta com o comprimento da fibra de transmissão. Verificou-se ainda que o aumento da QBER era devido às variações aleatórias da polarização dos fotões. Derivou-se um modelo para a estimativa rigorosa da QBER e desenvolveu-se um método automático de compensação das rotações aleatórias da polarização. O método foi validado numericamente e experimentalmente, num sistema de transmissão com 40km, verificando se que consegue compensar as rotações que os fotões sofrem durante a sua propagação em fibras óticas. Finalmente, implementou-se um protocolo de compromisso quântico entre duas entidades não confiávéis. Na codificação foram usados dois estados de polarização (SOPs) não ortogonais. Como canal quântico entre as duas entidades foi primeiro considerado que o emissor e o recetor se encontravam lado a lado, depois que estes estavam separados por 8km e finalmente que se encontravam a 16km um do outro. A implementação do protocolo foi feita com uma taxa de sucesso nas medidas superior a 93%, muito acima do limite teórico mínimo de 85%. Implementou-se ainda a melhor estratégia para que o compromisso pudesse ser falseado, tendo sido confirmada experimentalmente a sua segurança com uma confiança de 7 desvios padrão.Universidade de Aveiro2018-07-20T14:00:57Z2016-03-04T00:00:00Z2016-03-042017-03-04T17:00:00Zdoctoral thesisinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10773/16306TID:101419236engAlmeida, Álvaro José Caseiro deinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-06T03:58:30Zoai:ria.ua.pt:10773/16306Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-06T03:58:30Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Quantum communications in optical fibers |
title |
Quantum communications in optical fibers |
spellingShingle |
Quantum communications in optical fibers Almeida, Álvaro José Caseiro de Engenharia física Fibras ópticas Comunicação quântica |
title_short |
Quantum communications in optical fibers |
title_full |
Quantum communications in optical fibers |
title_fullStr |
Quantum communications in optical fibers |
title_full_unstemmed |
Quantum communications in optical fibers |
title_sort |
Quantum communications in optical fibers |
author |
Almeida, Álvaro José Caseiro de |
author_facet |
Almeida, Álvaro José Caseiro de |
author_role |
author |
dc.contributor.author.fl_str_mv |
Almeida, Álvaro José Caseiro de |
dc.subject.por.fl_str_mv |
Engenharia física Fibras ópticas Comunicação quântica |
topic |
Engenharia física Fibras ópticas Comunicação quântica |
description |
This thesis begins by proposing the implementation of a probabilistic photon source based on the stimulated four-wave mixing (FWM) process. This source was implemented experimentally and characterized in terms of its statistical distribution. Next, the impact of the stimulated FWM process in a co-propagating quantum signal was studied experimentally. Finally, the violation of Clauser-Horne-Shimony-Holt (CHSH) inequality was experimentally verified using polarization-entangled photon pairs, which were obtained from the spontaneous FWM process in a Sagnac loop. The experimental evolution of the quantum-bit error rate (QBER) in a system without control of polarization, using this degree of freedom to encode information, was studied. It was found out that the QBER increases with the length of the transmission fiber. It was also verified that the increase in the QBER was due to the random rotation of photon’s polarization. A model for the rigorous estimation of the QBER was derived and developed an automatic method to compensate the random rotations of polarization. The method was validated numerically and experimentally, in a transmission system with 40km, showing that it can compensate for the rotations that photons suffer during propagation in optical fibers. Finally, a quantum bit commitment (QBC) protocol between two untrusted entities was implemented. The encoding was performed using two nonorthogonal states of polarization (SOPs). As quantum channel between the two entities, it was first assumed that the transmitter and the receiver were side by side, and after that, they were separated by 8 km and finally, that they were 16km from each other. The implementation of the protocol was performed with a success rate in measurements exceeding 93%, well above the theoretical security limit of 85%. The best strategy for deceiving the commitment was also implemented, and its security experimentally confirmed with a confidence of 7 standard deviations. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-03-04T00:00:00Z 2016-03-04 2017-03-04T17:00:00Z 2018-07-20T14:00:57Z |
dc.type.driver.fl_str_mv |
doctoral thesis |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/16306 TID:101419236 |
url |
http://hdl.handle.net/10773/16306 |
identifier_str_mv |
TID:101419236 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade de Aveiro |
publisher.none.fl_str_mv |
Universidade de Aveiro |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817543563629559808 |