Soil salinity increases survival of freezing in the enchytraeid Enchytraeus albidus

Detalhes bibliográficos
Autor(a) principal: Silva, A. L. P.
Data de Publicação: 2013
Outros Autores: Holmstrup, M., Kostal, V., Amorim, M. J. B.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/24534
Resumo: Enchytraeus albidus is a freeze-tolerant enchytraeid found in diverse habitats, ranging from supralittoral to terrestrial and spanning temperate to arctic regions. Its freeze tolerance is well known but the effect of salinity in this strategy is still poorly understood. We therefore studied the combined effect of salinity (0, 15, 35, 50‰ NaCl) and sub-zero temperatures (-5, -14, -20°C) on the freeze tolerance of E. albidus collected from two distinct geographical regions (Greenland and Germany). A full factorial design was used to study survival, and physiological and biochemical end points. The effect of salinity on the reproduction of German E. albidus was also assessed. Exposure for 48 h to saline soils prior to cold exposure triggered an increase in osmolality and decrease in water content. Worms exposed to saline soils had an improved survival of freezing compared to worms frozen in non-saline soils, particularly at -20°C (survival more than doubled). Differential scanning calorimetry measurements showed that the fraction of water frozen at -5 and -14°C was lower in worms exposed to 35‰ NaCl than in control worms. The lowering of ice content by exposure to saline soils was probably the main explanation for the better freeze survival in saline-exposed worms. Glucose increased with decreasing temperature, but was lower in saline than in non-saline soils. Thus, glucose accumulation patterns did not explain differences in freeze survival. Overall, the physiological responses to freezing of E. albidus from Greenland and Germany were similar after exposure to saline soils. Soil salinity up to 30‰ improved reproduction by a factor of ca. 10.
id RCAP_213ec4a98d578fbb32d54c63af46a7e0
oai_identifier_str oai:ria.ua.pt:10773/24534
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Soil salinity increases survival of freezing in the enchytraeid Enchytraeus albiduscryoprotectantsfreeze toleranceglucoseice contentosmolalityEnchytraeus albidus is a freeze-tolerant enchytraeid found in diverse habitats, ranging from supralittoral to terrestrial and spanning temperate to arctic regions. Its freeze tolerance is well known but the effect of salinity in this strategy is still poorly understood. We therefore studied the combined effect of salinity (0, 15, 35, 50‰ NaCl) and sub-zero temperatures (-5, -14, -20°C) on the freeze tolerance of E. albidus collected from two distinct geographical regions (Greenland and Germany). A full factorial design was used to study survival, and physiological and biochemical end points. The effect of salinity on the reproduction of German E. albidus was also assessed. Exposure for 48 h to saline soils prior to cold exposure triggered an increase in osmolality and decrease in water content. Worms exposed to saline soils had an improved survival of freezing compared to worms frozen in non-saline soils, particularly at -20°C (survival more than doubled). Differential scanning calorimetry measurements showed that the fraction of water frozen at -5 and -14°C was lower in worms exposed to 35‰ NaCl than in control worms. The lowering of ice content by exposure to saline soils was probably the main explanation for the better freeze survival in saline-exposed worms. Glucose increased with decreasing temperature, but was lower in saline than in non-saline soils. Thus, glucose accumulation patterns did not explain differences in freeze survival. Overall, the physiological responses to freezing of E. albidus from Greenland and Germany were similar after exposure to saline soils. Soil salinity up to 30‰ improved reproduction by a factor of ca. 10.Company of Biologists2018-10-31T11:15:15Z2013-01-01T00:00:00Z2013info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/24534eng0022-094910.1242/jeb.083238Silva, A. L. P.Holmstrup, M.Kostal, V.Amorim, M. J. B.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-06T04:15:56Zoai:ria.ua.pt:10773/24534Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-06T04:15:56Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Soil salinity increases survival of freezing in the enchytraeid Enchytraeus albidus
title Soil salinity increases survival of freezing in the enchytraeid Enchytraeus albidus
spellingShingle Soil salinity increases survival of freezing in the enchytraeid Enchytraeus albidus
Silva, A. L. P.
cryoprotectants
freeze tolerance
glucose
ice content
osmolality
title_short Soil salinity increases survival of freezing in the enchytraeid Enchytraeus albidus
title_full Soil salinity increases survival of freezing in the enchytraeid Enchytraeus albidus
title_fullStr Soil salinity increases survival of freezing in the enchytraeid Enchytraeus albidus
title_full_unstemmed Soil salinity increases survival of freezing in the enchytraeid Enchytraeus albidus
title_sort Soil salinity increases survival of freezing in the enchytraeid Enchytraeus albidus
author Silva, A. L. P.
author_facet Silva, A. L. P.
Holmstrup, M.
Kostal, V.
Amorim, M. J. B.
author_role author
author2 Holmstrup, M.
Kostal, V.
Amorim, M. J. B.
author2_role author
author
author
dc.contributor.author.fl_str_mv Silva, A. L. P.
Holmstrup, M.
Kostal, V.
Amorim, M. J. B.
dc.subject.por.fl_str_mv cryoprotectants
freeze tolerance
glucose
ice content
osmolality
topic cryoprotectants
freeze tolerance
glucose
ice content
osmolality
description Enchytraeus albidus is a freeze-tolerant enchytraeid found in diverse habitats, ranging from supralittoral to terrestrial and spanning temperate to arctic regions. Its freeze tolerance is well known but the effect of salinity in this strategy is still poorly understood. We therefore studied the combined effect of salinity (0, 15, 35, 50‰ NaCl) and sub-zero temperatures (-5, -14, -20°C) on the freeze tolerance of E. albidus collected from two distinct geographical regions (Greenland and Germany). A full factorial design was used to study survival, and physiological and biochemical end points. The effect of salinity on the reproduction of German E. albidus was also assessed. Exposure for 48 h to saline soils prior to cold exposure triggered an increase in osmolality and decrease in water content. Worms exposed to saline soils had an improved survival of freezing compared to worms frozen in non-saline soils, particularly at -20°C (survival more than doubled). Differential scanning calorimetry measurements showed that the fraction of water frozen at -5 and -14°C was lower in worms exposed to 35‰ NaCl than in control worms. The lowering of ice content by exposure to saline soils was probably the main explanation for the better freeze survival in saline-exposed worms. Glucose increased with decreasing temperature, but was lower in saline than in non-saline soils. Thus, glucose accumulation patterns did not explain differences in freeze survival. Overall, the physiological responses to freezing of E. albidus from Greenland and Germany were similar after exposure to saline soils. Soil salinity up to 30‰ improved reproduction by a factor of ca. 10.
publishDate 2013
dc.date.none.fl_str_mv 2013-01-01T00:00:00Z
2013
2018-10-31T11:15:15Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/24534
url http://hdl.handle.net/10773/24534
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0022-0949
10.1242/jeb.083238
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Company of Biologists
publisher.none.fl_str_mv Company of Biologists
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817543681363673088