On difunctionality of class relations

Detalhes bibliográficos
Autor(a) principal: Hoefnagel, Michael
Data de Publicação: 2020
Outros Autores: Janelidze, Zurab, Rodelo, Diana
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/89450
https://doi.org/10.1007/s00012-020-00651-z
Resumo: For a given variety V of algebras, we define a class relation to be a binary relation R ⊆ S^2 which is of the form R = S^2 ∩ K for some congruence class K on A^2, where A is an algebra in V such that S ⊆ A. In this paper we study the following property of V: every reflexive class relation is an equivalence relation. In particular, we obtain equivalent characterizations of this property analogous to well-known equivalent characterizations of congruence-permutable varieties. This property determines a Mal’tsev condition on the variety and in a suitable sense, it is a join of Chajda’s egg-box property as well as Duda’s direct decomposability of congruence classes.
id RCAP_214378ed738e613fde71396b1a3a1d5a
oai_identifier_str oai:estudogeral.uc.pt:10316/89450
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling On difunctionality of class relationsClass relations, Congruence permutability, Congruence distributivity, Congruence modularity, Directly decomposable congruence classes, Difunctionality, Egg-box property, Mal’tsev condition, Mal’tsev variety, Shifting lemma.For a given variety V of algebras, we define a class relation to be a binary relation R ⊆ S^2 which is of the form R = S^2 ∩ K for some congruence class K on A^2, where A is an algebra in V such that S ⊆ A. In this paper we study the following property of V: every reflexive class relation is an equivalence relation. In particular, we obtain equivalent characterizations of this property analogous to well-known equivalent characterizations of congruence-permutable varieties. This property determines a Mal’tsev condition on the variety and in a suitable sense, it is a join of Chajda’s egg-box property as well as Duda’s direct decomposability of congruence classes.Springer Verlag2020info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/89450http://hdl.handle.net/10316/89450https://doi.org/10.1007/s00012-020-00651-zenghttps://link.springer.com/article/10.1007/s00012-020-00651-zHoefnagel, MichaelJanelidze, ZurabRodelo, Dianainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-05-25T06:20:58Zoai:estudogeral.uc.pt:10316/89450Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:09:45.626037Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv On difunctionality of class relations
title On difunctionality of class relations
spellingShingle On difunctionality of class relations
Hoefnagel, Michael
Class relations, Congruence permutability, Congruence distributivity, Congruence modularity, Directly decomposable congruence classes, Difunctionality, Egg-box property, Mal’tsev condition, Mal’tsev variety, Shifting lemma.
title_short On difunctionality of class relations
title_full On difunctionality of class relations
title_fullStr On difunctionality of class relations
title_full_unstemmed On difunctionality of class relations
title_sort On difunctionality of class relations
author Hoefnagel, Michael
author_facet Hoefnagel, Michael
Janelidze, Zurab
Rodelo, Diana
author_role author
author2 Janelidze, Zurab
Rodelo, Diana
author2_role author
author
dc.contributor.author.fl_str_mv Hoefnagel, Michael
Janelidze, Zurab
Rodelo, Diana
dc.subject.por.fl_str_mv Class relations, Congruence permutability, Congruence distributivity, Congruence modularity, Directly decomposable congruence classes, Difunctionality, Egg-box property, Mal’tsev condition, Mal’tsev variety, Shifting lemma.
topic Class relations, Congruence permutability, Congruence distributivity, Congruence modularity, Directly decomposable congruence classes, Difunctionality, Egg-box property, Mal’tsev condition, Mal’tsev variety, Shifting lemma.
description For a given variety V of algebras, we define a class relation to be a binary relation R ⊆ S^2 which is of the form R = S^2 ∩ K for some congruence class K on A^2, where A is an algebra in V such that S ⊆ A. In this paper we study the following property of V: every reflexive class relation is an equivalence relation. In particular, we obtain equivalent characterizations of this property analogous to well-known equivalent characterizations of congruence-permutable varieties. This property determines a Mal’tsev condition on the variety and in a suitable sense, it is a join of Chajda’s egg-box property as well as Duda’s direct decomposability of congruence classes.
publishDate 2020
dc.date.none.fl_str_mv 2020
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/89450
http://hdl.handle.net/10316/89450
https://doi.org/10.1007/s00012-020-00651-z
url http://hdl.handle.net/10316/89450
https://doi.org/10.1007/s00012-020-00651-z
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://link.springer.com/article/10.1007/s00012-020-00651-z
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Springer Verlag
publisher.none.fl_str_mv Springer Verlag
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133992893546496