Harmonic Analysis on the Einstein Gyrogroup

Detalhes bibliográficos
Autor(a) principal: Ferreira, Milton
Data de Publicação: 2014
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.8/3809
Resumo: In this paper we study harmonic analysis on the Einstein gyrogroup of the open ball of ${\mathbb R}^n, n \in \mathbb{N},$ centered at the origin and with arbitrary radius $t \in \mathbb{R}^+,$ associated to the generalised Laplace-Beltrami operator $$ L_{\sigma,t} = \disp \left( 1 - \frac{\|x\|^2}{t^2} \right) \!\left( \Delta - \sum_{i,j=1}^n \frac{x_i x_j}{t^2} \frac{\partial^2}{\partial x_i \partial x_j} - \frac{\kappa}{t^2} \sum_{i=1}^n x_i \frac{\partial}{\partial x_i} + \frac{\kappa(2-\kappa)}{4t^2} \right)$$where $\kappa=n+\sigma$ and $\sigma \in {\mathbb R}$ is an arbitrary parameter. The generalised harmonic analysis for $L_{\sigma,t}$ gives rise to the $(\sigma,t)$-translation, the $(\sigma,t)$-convo\-lution, the $(\sigma,t)$-spherical Fourier transform, the $(\sigma,t)$-Poisson transform, the $(\sigma,t)$-Helgason Fourier transform, its inverse transform and Plancherel's Theorem. In the limit of large $t,$ $t \rightarrow +\infty,$ the resulting hyperbolic harmonic analysis tends to the standard Euclidean harmonic analysis on ${\mathbb R}^n,$ thus unifying hyperbolic and Euclidean harmonic analysis.
id RCAP_2266b1884800e43bb58c9f9bcd430eec
oai_identifier_str oai:iconline.ipleiria.pt:10400.8/3809
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Harmonic Analysis on the Einstein GyrogroupEinstein gyrogroupGeneralised Helgason-Fourier transformSpherical functionsHyperbolic convolutionEigenfunctionsLaplace-Beltrami-operatorIn this paper we study harmonic analysis on the Einstein gyrogroup of the open ball of ${\mathbb R}^n, n \in \mathbb{N},$ centered at the origin and with arbitrary radius $t \in \mathbb{R}^+,$ associated to the generalised Laplace-Beltrami operator $$ L_{\sigma,t} = \disp \left( 1 - \frac{\|x\|^2}{t^2} \right) \!\left( \Delta - \sum_{i,j=1}^n \frac{x_i x_j}{t^2} \frac{\partial^2}{\partial x_i \partial x_j} - \frac{\kappa}{t^2} \sum_{i=1}^n x_i \frac{\partial}{\partial x_i} + \frac{\kappa(2-\kappa)}{4t^2} \right)$$where $\kappa=n+\sigma$ and $\sigma \in {\mathbb R}$ is an arbitrary parameter. The generalised harmonic analysis for $L_{\sigma,t}$ gives rise to the $(\sigma,t)$-translation, the $(\sigma,t)$-convo\-lution, the $(\sigma,t)$-spherical Fourier transform, the $(\sigma,t)$-Poisson transform, the $(\sigma,t)$-Helgason Fourier transform, its inverse transform and Plancherel's Theorem. In the limit of large $t,$ $t \rightarrow +\infty,$ the resulting hyperbolic harmonic analysis tends to the standard Euclidean harmonic analysis on ${\mathbb R}^n,$ thus unifying hyperbolic and Euclidean harmonic analysis.Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences (IBPhBME-BAS)IC-OnlineFerreira, Milton2019-02-07T11:52:17Z20142014-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.8/3809engFerreira M., Harmonic analysis on the Einstein gyrogroup, J. Geom. Symm. Phys. 35, 2014, 21-601312-51921314-567310.7546/jgsp-35-2014-21-60metadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-17T15:47:58Zoai:iconline.ipleiria.pt:10400.8/3809Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:47:50.262830Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Harmonic Analysis on the Einstein Gyrogroup
title Harmonic Analysis on the Einstein Gyrogroup
spellingShingle Harmonic Analysis on the Einstein Gyrogroup
Ferreira, Milton
Einstein gyrogroup
Generalised Helgason-Fourier transform
Spherical functions
Hyperbolic convolution
Eigenfunctions
Laplace-Beltrami-operator
title_short Harmonic Analysis on the Einstein Gyrogroup
title_full Harmonic Analysis on the Einstein Gyrogroup
title_fullStr Harmonic Analysis on the Einstein Gyrogroup
title_full_unstemmed Harmonic Analysis on the Einstein Gyrogroup
title_sort Harmonic Analysis on the Einstein Gyrogroup
author Ferreira, Milton
author_facet Ferreira, Milton
author_role author
dc.contributor.none.fl_str_mv IC-Online
dc.contributor.author.fl_str_mv Ferreira, Milton
dc.subject.por.fl_str_mv Einstein gyrogroup
Generalised Helgason-Fourier transform
Spherical functions
Hyperbolic convolution
Eigenfunctions
Laplace-Beltrami-operator
topic Einstein gyrogroup
Generalised Helgason-Fourier transform
Spherical functions
Hyperbolic convolution
Eigenfunctions
Laplace-Beltrami-operator
description In this paper we study harmonic analysis on the Einstein gyrogroup of the open ball of ${\mathbb R}^n, n \in \mathbb{N},$ centered at the origin and with arbitrary radius $t \in \mathbb{R}^+,$ associated to the generalised Laplace-Beltrami operator $$ L_{\sigma,t} = \disp \left( 1 - \frac{\|x\|^2}{t^2} \right) \!\left( \Delta - \sum_{i,j=1}^n \frac{x_i x_j}{t^2} \frac{\partial^2}{\partial x_i \partial x_j} - \frac{\kappa}{t^2} \sum_{i=1}^n x_i \frac{\partial}{\partial x_i} + \frac{\kappa(2-\kappa)}{4t^2} \right)$$where $\kappa=n+\sigma$ and $\sigma \in {\mathbb R}$ is an arbitrary parameter. The generalised harmonic analysis for $L_{\sigma,t}$ gives rise to the $(\sigma,t)$-translation, the $(\sigma,t)$-convo\-lution, the $(\sigma,t)$-spherical Fourier transform, the $(\sigma,t)$-Poisson transform, the $(\sigma,t)$-Helgason Fourier transform, its inverse transform and Plancherel's Theorem. In the limit of large $t,$ $t \rightarrow +\infty,$ the resulting hyperbolic harmonic analysis tends to the standard Euclidean harmonic analysis on ${\mathbb R}^n,$ thus unifying hyperbolic and Euclidean harmonic analysis.
publishDate 2014
dc.date.none.fl_str_mv 2014
2014-01-01T00:00:00Z
2019-02-07T11:52:17Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.8/3809
url http://hdl.handle.net/10400.8/3809
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Ferreira M., Harmonic analysis on the Einstein gyrogroup, J. Geom. Symm. Phys. 35, 2014, 21-60
1312-5192
1314-5673
10.7546/jgsp-35-2014-21-60
dc.rights.driver.fl_str_mv metadata only access
info:eu-repo/semantics/openAccess
rights_invalid_str_mv metadata only access
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences (IBPhBME-BAS)
publisher.none.fl_str_mv Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences (IBPhBME-BAS)
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136972140183552