Self-supervised machine learning: a new hope for gravitational wave detection?

Detalhes bibliográficos
Autor(a) principal: Vieira, Samuel Jorge Fernandes
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/39476
Resumo: In this thesis, the problem of the appearance of ”glitches” during the detection of gravitational wave signals is addressed. ”Glitches” are classified as noise (excluding background noise), whose origin may be due to the instrumentation used in the detectors or natural causes. Initially, a short introduction is made in this thesis about the operation of LIGO detectors, gravitational waves, and glitches, in the initial chapters. To solve the problem addressed, the use of neural networks is proposed to classify and identify the glitches that appear during data acquisition. Supervised learning methods together with self-supervised learning were used to train neural networks and classify spectrograms that contain frequency versus time information for each corresponding signal. The selected neural network architecture was ”Resnet18”, and the optimizer selected was ”AdamW”. The selected loss function was ”Cross-Entropy”. Three training sessions were conducted for each model: model (I) used supervised learning, and models (II) and (III) used self-supervised learning. The model (III) used self-supervised learning with the knowledge acquired from model (II) through ”transfer learning”. The training of these neural networks, led to high values for the metrics used in this thesis. The highest accuracies obtained were about 96.81%, 96.74% and 96.50% for the corresponding models (I), (II), and (III), while the best macro averaged F1-score was about 94.49%, 96.75% and 94.15%, with hardly any difference in metrics in the method employed.
id RCAP_22858056b9cfe288f1945642e1759c80
oai_identifier_str oai:ria.ua.pt:10773/39476
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Self-supervised machine learning: a new hope for gravitational wave detection?Image classificationGravitational wave signalsDeep learningElf-supervised learningSupervised learningGravitational wave glitchesResnetsIn this thesis, the problem of the appearance of ”glitches” during the detection of gravitational wave signals is addressed. ”Glitches” are classified as noise (excluding background noise), whose origin may be due to the instrumentation used in the detectors or natural causes. Initially, a short introduction is made in this thesis about the operation of LIGO detectors, gravitational waves, and glitches, in the initial chapters. To solve the problem addressed, the use of neural networks is proposed to classify and identify the glitches that appear during data acquisition. Supervised learning methods together with self-supervised learning were used to train neural networks and classify spectrograms that contain frequency versus time information for each corresponding signal. The selected neural network architecture was ”Resnet18”, and the optimizer selected was ”AdamW”. The selected loss function was ”Cross-Entropy”. Three training sessions were conducted for each model: model (I) used supervised learning, and models (II) and (III) used self-supervised learning. The model (III) used self-supervised learning with the knowledge acquired from model (II) through ”transfer learning”. The training of these neural networks, led to high values for the metrics used in this thesis. The highest accuracies obtained were about 96.81%, 96.74% and 96.50% for the corresponding models (I), (II), and (III), while the best macro averaged F1-score was about 94.49%, 96.75% and 94.15%, with hardly any difference in metrics in the method employed.Nesta tese é abordado o problema do aparecimento de ”glitches” durante a deteção de sinais de ondas gravitacionais. ”glitches” são classificados como ruído, cuja origem pode ser devido a instrumentação usada nos detetores ou terem origem em causas naturais. No trabalho apresentado nesta tese é feita inicialmente uma pequena introdução sobre o funcionamento dos detetores LIGO, ondas gravitacionais e ”Glitches” nos primeiros capítulos. Para resolver o problema abordado ´e proposto o uso de redes para classificar e identificar os ”Glicthes” que aparecem durante a leitura dos dados adquiridos pelos detetores. Métodos de aprendizagem supervisonada em conjunto com aprendizagem autosupervisonada foram usados para treinar redes neuronais para que possam classificar imagens que contêm informação na forma de espetrogramas para cada sinal correspondente. A arquitetura da rede neuronal selecionada foi a Resnet18 e para o treino o optimizador selecionado foi o ”AdamW”. A função de custo selecionada foi a ”Cross-Entropy”. Foram realizados três sessões de treinos, uma sessão por cada modelo: modelo (I) usou aprendizagem supervisionada, os modelos (II) e (III) usaram aprendizagem auto-supervisionada. O modelo (III) usou aprendizagem auto-supervisionada usando os conhecimentos adquiridos do modelo (II) através de uma metedologia designada por ”transfer learning”. Após o treino destas redes neuronais os resultados obtidos foram de facto bastante satisfatórios com valores elevados das métricas utilizadas. As melhores exatidões obtidas foram cerca de 96.81%, 96.74% e 96.50% para as correspondentes modelos (I), (II) e (III) enquanto que os melhores F1-score foi cerca de 94.49%, 96.75% e 94.15% não havendo muita diferença nas métricas no método usado.2023-10-11T10:55:18Z2023-06-16T00:00:00Z2023-06-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/39476engVieira, Samuel Jorge Fernandesinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:17:03Zoai:ria.ua.pt:10773/39476Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:09:37.802641Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Self-supervised machine learning: a new hope for gravitational wave detection?
title Self-supervised machine learning: a new hope for gravitational wave detection?
spellingShingle Self-supervised machine learning: a new hope for gravitational wave detection?
Vieira, Samuel Jorge Fernandes
Image classification
Gravitational wave signals
Deep learning
Elf-supervised learning
Supervised learning
Gravitational wave glitches
Resnets
title_short Self-supervised machine learning: a new hope for gravitational wave detection?
title_full Self-supervised machine learning: a new hope for gravitational wave detection?
title_fullStr Self-supervised machine learning: a new hope for gravitational wave detection?
title_full_unstemmed Self-supervised machine learning: a new hope for gravitational wave detection?
title_sort Self-supervised machine learning: a new hope for gravitational wave detection?
author Vieira, Samuel Jorge Fernandes
author_facet Vieira, Samuel Jorge Fernandes
author_role author
dc.contributor.author.fl_str_mv Vieira, Samuel Jorge Fernandes
dc.subject.por.fl_str_mv Image classification
Gravitational wave signals
Deep learning
Elf-supervised learning
Supervised learning
Gravitational wave glitches
Resnets
topic Image classification
Gravitational wave signals
Deep learning
Elf-supervised learning
Supervised learning
Gravitational wave glitches
Resnets
description In this thesis, the problem of the appearance of ”glitches” during the detection of gravitational wave signals is addressed. ”Glitches” are classified as noise (excluding background noise), whose origin may be due to the instrumentation used in the detectors or natural causes. Initially, a short introduction is made in this thesis about the operation of LIGO detectors, gravitational waves, and glitches, in the initial chapters. To solve the problem addressed, the use of neural networks is proposed to classify and identify the glitches that appear during data acquisition. Supervised learning methods together with self-supervised learning were used to train neural networks and classify spectrograms that contain frequency versus time information for each corresponding signal. The selected neural network architecture was ”Resnet18”, and the optimizer selected was ”AdamW”. The selected loss function was ”Cross-Entropy”. Three training sessions were conducted for each model: model (I) used supervised learning, and models (II) and (III) used self-supervised learning. The model (III) used self-supervised learning with the knowledge acquired from model (II) through ”transfer learning”. The training of these neural networks, led to high values for the metrics used in this thesis. The highest accuracies obtained were about 96.81%, 96.74% and 96.50% for the corresponding models (I), (II), and (III), while the best macro averaged F1-score was about 94.49%, 96.75% and 94.15%, with hardly any difference in metrics in the method employed.
publishDate 2023
dc.date.none.fl_str_mv 2023-10-11T10:55:18Z
2023-06-16T00:00:00Z
2023-06-16
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/39476
url http://hdl.handle.net/10773/39476
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137746491539456