Thermodynamics of gas–liquid colloidal equilibrium states: hetero-phase fluctuations

Detalhes bibliográficos
Autor(a) principal: Woodcock, Leslie
Data de Publicação: 2019
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.1/13528
Resumo: Following on from two previous JETC (Joint European Thermodynamics Conference) presentations, we present a preliminary report of further advances towards the thermodynamic description of critical behavior and a supercritical gas-liquid coexistence with a supercritical fluid mesophase defined by percolation loci. The experimental data along supercritical constant temperature isotherms (T >= T-c) are consistent with the existence of a two-state mesophase, with constant change in pressure with density, rigidity, (dp/d rho) (T), and linear thermodynamic state-functions of density. The supercritical mesophase is bounded by 3rd-order phase transitions at percolation thresholds. Here we present the evidence that these percolation transitions of both gaseous and liquid states along any isotherm are preceded by pre-percolation hetero-phase fluctuations that can explain the thermodynamic properties in the mesophase and its vicinity. Hetero-phase fluctuations give rise to one-component colloidal-dispersion states; a single Gibbs phase retaining 2 degrees of freedom in which both gas and liquid states with different densities percolate the phase volume. In order to describe the thermodynamic properties of two-state critical and supercritical coexistence, we introduce the concept of a hypothetical homo-phase of both gas and liquid, defined as extrapolated equilibrium states in the pre-percolation vicinity, with the hetero-phase fractions subtracted. We observe that there can be no difference in chemical potential between homo-phase liquid and gaseous states along the critical isotherm in mid-critical isochoric experiments when the meniscus disappears at T = T-c. For T > T-c, thermodynamic states comprise equal mole fractions of the homo-phase gas and liquid, both percolating the total phase volume, at the same temperature, pressure, and with a uniform chemical potential, stabilised by a positive finite interfacial surface tension.
id RCAP_23cbbce385f7549c7ed57b7de42c6684
oai_identifier_str oai:sapientia.ualg.pt:10400.1/13528
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Thermodynamics of gas–liquid colloidal equilibrium states: hetero-phase fluctuationsHetero-phase fluctuationPercolation transitionSupercritical mesophaseLiquid stateArgonFollowing on from two previous JETC (Joint European Thermodynamics Conference) presentations, we present a preliminary report of further advances towards the thermodynamic description of critical behavior and a supercritical gas-liquid coexistence with a supercritical fluid mesophase defined by percolation loci. The experimental data along supercritical constant temperature isotherms (T >= T-c) are consistent with the existence of a two-state mesophase, with constant change in pressure with density, rigidity, (dp/d rho) (T), and linear thermodynamic state-functions of density. The supercritical mesophase is bounded by 3rd-order phase transitions at percolation thresholds. Here we present the evidence that these percolation transitions of both gaseous and liquid states along any isotherm are preceded by pre-percolation hetero-phase fluctuations that can explain the thermodynamic properties in the mesophase and its vicinity. Hetero-phase fluctuations give rise to one-component colloidal-dispersion states; a single Gibbs phase retaining 2 degrees of freedom in which both gas and liquid states with different densities percolate the phase volume. In order to describe the thermodynamic properties of two-state critical and supercritical coexistence, we introduce the concept of a hypothetical homo-phase of both gas and liquid, defined as extrapolated equilibrium states in the pre-percolation vicinity, with the hetero-phase fractions subtracted. We observe that there can be no difference in chemical potential between homo-phase liquid and gaseous states along the critical isotherm in mid-critical isochoric experiments when the meniscus disappears at T = T-c. For T > T-c, thermodynamic states comprise equal mole fractions of the homo-phase gas and liquid, both percolating the total phase volume, at the same temperature, pressure, and with a uniform chemical potential, stabilised by a positive finite interfacial surface tension.MDPISapientiaWoodcock, Leslie2020-02-18T18:03:31Z20192019-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.1/13528eng1099-430010.3390/e21121189info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-24T10:25:39Zoai:sapientia.ualg.pt:10400.1/13528Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:04:40.985446Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Thermodynamics of gas–liquid colloidal equilibrium states: hetero-phase fluctuations
title Thermodynamics of gas–liquid colloidal equilibrium states: hetero-phase fluctuations
spellingShingle Thermodynamics of gas–liquid colloidal equilibrium states: hetero-phase fluctuations
Woodcock, Leslie
Hetero-phase fluctuation
Percolation transition
Supercritical mesophase
Liquid state
Argon
title_short Thermodynamics of gas–liquid colloidal equilibrium states: hetero-phase fluctuations
title_full Thermodynamics of gas–liquid colloidal equilibrium states: hetero-phase fluctuations
title_fullStr Thermodynamics of gas–liquid colloidal equilibrium states: hetero-phase fluctuations
title_full_unstemmed Thermodynamics of gas–liquid colloidal equilibrium states: hetero-phase fluctuations
title_sort Thermodynamics of gas–liquid colloidal equilibrium states: hetero-phase fluctuations
author Woodcock, Leslie
author_facet Woodcock, Leslie
author_role author
dc.contributor.none.fl_str_mv Sapientia
dc.contributor.author.fl_str_mv Woodcock, Leslie
dc.subject.por.fl_str_mv Hetero-phase fluctuation
Percolation transition
Supercritical mesophase
Liquid state
Argon
topic Hetero-phase fluctuation
Percolation transition
Supercritical mesophase
Liquid state
Argon
description Following on from two previous JETC (Joint European Thermodynamics Conference) presentations, we present a preliminary report of further advances towards the thermodynamic description of critical behavior and a supercritical gas-liquid coexistence with a supercritical fluid mesophase defined by percolation loci. The experimental data along supercritical constant temperature isotherms (T >= T-c) are consistent with the existence of a two-state mesophase, with constant change in pressure with density, rigidity, (dp/d rho) (T), and linear thermodynamic state-functions of density. The supercritical mesophase is bounded by 3rd-order phase transitions at percolation thresholds. Here we present the evidence that these percolation transitions of both gaseous and liquid states along any isotherm are preceded by pre-percolation hetero-phase fluctuations that can explain the thermodynamic properties in the mesophase and its vicinity. Hetero-phase fluctuations give rise to one-component colloidal-dispersion states; a single Gibbs phase retaining 2 degrees of freedom in which both gas and liquid states with different densities percolate the phase volume. In order to describe the thermodynamic properties of two-state critical and supercritical coexistence, we introduce the concept of a hypothetical homo-phase of both gas and liquid, defined as extrapolated equilibrium states in the pre-percolation vicinity, with the hetero-phase fractions subtracted. We observe that there can be no difference in chemical potential between homo-phase liquid and gaseous states along the critical isotherm in mid-critical isochoric experiments when the meniscus disappears at T = T-c. For T > T-c, thermodynamic states comprise equal mole fractions of the homo-phase gas and liquid, both percolating the total phase volume, at the same temperature, pressure, and with a uniform chemical potential, stabilised by a positive finite interfacial surface tension.
publishDate 2019
dc.date.none.fl_str_mv 2019
2019-01-01T00:00:00Z
2020-02-18T18:03:31Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.1/13528
url http://hdl.handle.net/10400.1/13528
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1099-4300
10.3390/e21121189
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133284270080000